首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   415篇
  免费   36篇
  2023年   3篇
  2022年   5篇
  2021年   8篇
  2020年   3篇
  2019年   3篇
  2018年   7篇
  2017年   4篇
  2016年   13篇
  2015年   13篇
  2014年   11篇
  2013年   32篇
  2012年   21篇
  2011年   19篇
  2010年   18篇
  2009年   11篇
  2008年   28篇
  2007年   29篇
  2006年   24篇
  2005年   21篇
  2004年   19篇
  2003年   25篇
  2002年   20篇
  2001年   8篇
  2000年   10篇
  1999年   8篇
  1998年   7篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   7篇
  1992年   7篇
  1991年   4篇
  1990年   5篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1985年   2篇
  1984年   6篇
  1983年   5篇
  1982年   1篇
  1981年   1篇
  1980年   4篇
  1979年   2篇
  1978年   5篇
  1977年   2篇
  1976年   3篇
  1975年   3篇
  1974年   3篇
  1973年   2篇
  1968年   1篇
排序方式: 共有451条查询结果,搜索用时 15 毫秒
31.
The SK-N-MC neuroblastoma cell line, which expresses surface tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors TRAIL-R2 and TRAIL-R4, was used as a model system to examine the effect of TRAIL on key intracellular pathways involved in the control of neuronal cell survival and apoptosis. TRAIL induced distinct short-term (1-60 min) and long-term (3-24 h) effects on the protein kinase B (PKB)/Akt (Akt), extracellular signal-regulated kinase (ERK), cAMP response element-binding protein (CREB), nuclear factor kappa B (NF-kappaB) and caspase pathways. TRAIL rapidly (from 20 min) induced the phosphorylation of Akt and ERK, but not of c-Jun NH2-terminal kinase (JNK). Moreover, TRAIL increased CREB phosphorylation and phospho-CREB DNA binding activity in a phosphatidylinositol 3-kinase (PI 3K)/Akt-dependent manner. At later time points (from 3 to 6 h onwards) TRAIL induced a progressive degradation of inhibitor of kappaB (IkappaB)beta and IkappaBepsilon, but not IkappaBalpha, coupled to the nuclear translocation of NF-kappaB and an increase in its DNA binding activity. In the same time frame, TRAIL started to activate caspase-8 and caspase-3, and to induce apoptosis. Remarkably, caspase-dependent cleavage of NF-kappaB family members as well as of Akt and CREB proteins, but not of ERK, became prominent at 24 h, a time point coincident with the peak of caspase-dependent apoptosis.  相似文献   
32.
The alkaloid lycorine, which is considered to inhibit the last step in ascorbic acid biosynthesis, is produced by Narcissus pseudonarcissus. The growth of two strains (C1 and C3) of Cryptococcus laurentii isolated from root tips of N. pseudonarcissus is inhibited by lycorine, as is the in vivo production of ascorbic acid from -galactonic acid-γ-lactone. In contrast, C. laurentii strain C4, isolated from the lycorine-containing bracts of the bulb, was not inhibited by lycorine and did not contain ascorbic acid when cultivated with or without -galactonic acid-γ-lactone. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
33.
The synthesis of sufficient amounts of oligosaccharides is the bottleneck for the study of their biological function and their possible use as drug. As an alternative for chemical synthesis, we propose to use Escherichia coli as a "living factory." We have addressed the production of the Galp alpha(1-3)Galp beta(1-4)GlcNAc epitope, the major porcine antigen responsible for xenograft rejection. An E. coli strain was generated which simultaneously expresses NodC (to provide the chitin-pentaose acceptor), beta(1-4) galactosyltransferase LgtB, and bovine alpha(1-3) galactosyltransferase GstA. This strain produced 0.68 g/L of the heptasaccharide Galp alpha(1-3)Galp beta(1-4)(GlcNAc)(5), which harbours the xenoantigen at its non-reducing end, establishing the feasibility of this approach.  相似文献   
34.
Chromosome condensation during the G2/M progression of mouse pachytene spermatocytes induced by the phosphatase inhibitor okadaic acid (OA) requires the activation of the MAPK Erk1. In many cell systems, p90Rsks are the main effectors of Erk1/2 function. We have identified p90Rsk2 as the isoform that is specifically expressed in mouse spermatocytes and have shown that it is activated during the OA-triggered meiotic G2/M progression. By using the MEK inhibitor U0126, we have demonstrated that activation of p90Rsk2 during meiotic progression requires activation of the MAPK pathway. Immunofluorescence analysis indicates that activated Erks and p90Rsk2 are tightly associated with condensed chromosomes during the G2/M transition in meiotic cells. We also found that active p90Rsk2 was able to phosphorylate histone H3 at Ser10 in vitro, but that the activation of the Erk1/p90Rsk2 pathway was not necessary for phosphorylation of H3 in vivo. Furthermore, phosphorylation of H3 was not sufficient to cause condensation of meiotic chromosomes in mouse spermatocytes. Other proteins known to associate with chromatin may represent effectors of Erk1 and p90Rsk2 during chromosome condensation. Nek2 (NIMA-related kinase 2), which associates with chromosomes, plays an active role in chromatin condensation and is stimulated by treatment of pachytene spermatocytes with okadaic acid. We show that inhibition of the MAPK pathway by preincubation of spermatocytes with U0126 suppresses Nek2 activation, and that incubation of spermatocyte cell extracts with activated p90Rsk2 causes stimulation of Nek2 kinase activity. Furthermore, we show that the Nek2 kinase domain is a substrate for p90Rsk2 phosphorylation in vitro. These data establish a connection between the Erk1/p90Rsk2 pathway, Nek2 activation and chromosome condensation during the G2/M transition of the first meiotic prophase.  相似文献   
35.
We previously reported the identification of a novel nuclear compartment detectable in heat-shocked HeLa cells that we termed stress-induced Src-activated during mitosis nuclear body (SNB). This structure is the recruitment center for heat shock factor 1 and for a number of RNA processing factors, among a subset of Serine-Arginine splicing factors. In this article, we show that stress-induced SNBs are detectable in human but not in hamster cells. By means of hamster>human cell hybrids, we have identified three human chromosomes (9, 12, and 15) that are individually able to direct the formation of stress bodies in hamster cells. Similarly to stress-induced SNB, these bodies are sites of accumulation of hnRNP A1-interacting protein and heat shock factor 1, are usually associated to nucleoli, and consist of clusters of perichromatin granules. We show that the p13-q13 region of human chromosome 9 is sufficient to direct the formation of stress bodies in hamster>human cell hybrids. Fluorescence in situ hybridization experiments demonstrate that the pericentromeric heterochromatic q12 band of chromosome 9 and the centromeric regions of chromosomes 12 and 15 colocalize with stress-induced SNBs in human cells. Our data indicate that human chromosomes 9, 12, and 15 contain the nucleation sites of stress bodies in heat-shocked HeLa cells.  相似文献   
36.
Disruption of the apoptotic pathways may account for resistance to chemotherapy and treatment failures in human neoplastic disease. To further evaluate this issue, we isolated a HL-60 cell clone highly resistant to several drugs inducing apoptosis and to the differentiating chemical all-trans-retinoic acid (ATRA). The resistant clone displayed an activated phosphoinositide 3-kinase (PI3K)/AKT1 pathway, with levels of phosphatidylinositol (3,4,5) trisphosphate higher than the parental cells and increased levels of both Thr 308 and Ser 473 phosphorylated AKT1. In vitro AKT1 activity was elevated in resistant cells, whereas treatment of the resistant cell clone with two inhibitors of PI3K, wortmannin or Ly294002, strongly reduced phosphatidylinositol (3,4,5) trisphosphate levels and AKT1 activity. The inhibitors reversed resistance to drugs. Resistant cells overexpressing either dominant negative PI3K or dominant negative AKT1 became sensitive to drugs and ATRA. Conversely, if parental HL-60 cells were forced to overexpress an activated AKT1, they became resistant to apoptotic inducers and ATRA. There was a tight relationship between the activation of the PI3K/AKT1 axis and the expression of c-IAP1 and c-IAP2 proteins. Activation of the PI3K/AKT1 axis in resistant cells was dependent on enhanced tyrosine phosphorylation of the p85 regulatory subunit of PI3K, conceivably due to an autocrine insulin-like growth factor-I production. Our findings suggest that an up-regulation of the PI3K/AKT1 pathway might be one of the survival mechanisms responsible for the onset of resistance to chemotherapeutic and differentiating therapy in patients with acute leukemia.  相似文献   
37.
Prolin-rich kinase 2 (PYK2) is a nonreceptor tyrosine kinase related to the focal adhesion kinase (FAK) p125(FAK). PYK2 is rapidly phosphorylated on tyrosine residues in response to various stimuli, such as tumor necrosis factor-alpha (TNF-alpha), changes in osmolarity, elevation in intracellular calcium concentration, angiotensin, and UV irradiation. PYK2 has ligand sequences for Src homology 2 and 3 (SH-2 and SH-3), and has binding sites for paxillin and p130(cas). Activation of PYK2 leads to modulation of ion channel function, phosphorylation of tyrosine residues, and activation of the MAP kinase signaling pathways. Immunocytochemistry shows that PYK2 is present in mouse germinal and Sertoli cells (ser). Northern blot and immunoprecipitation analysis demonstrate that, among germinal cells, PYK2 is more abundant in spermatocytes (spc) and spermatids (spt); in addition, immunofluorescence analysis clearly shows that the diffuse cytoplasmic localization of PYK2 changes in a specific cellular compartment in spt and spermatozoa.  相似文献   
38.
Suspension cultured cells of six rice cultivars differing in their sensitivity to blast were treated with mycelial wall hydrolysates prepared from seven isolates belonging to different Pyricularia grisea lineages. Soon after elicitor addition, rice cells produced significant amounts of superoxide anion, which was rapidly converted into diffusible peroxide. Maximal effects were achieved at 50 mg L-1 elicitor. In all cases, a 7 to 13-fold increase in the basal rate of reactive oxygen species production was found. Neither differential effects among strains nor clear relationships between lineage and the resulting oxidative burst were evident. Interestingly, a good correlation was found between basal (and elicited) levels of peroxide generation and the overall tolerance of rice cultivars to the pathogen. About two days after elicitation, cell death occurred proportional to the amount of hydrogen peroxide released. Peroxide was required to trigger loss of cell viability, but the latter was not due to a direct toxic effect, suggesting the induction of programmed cell death. Results represent the first data aimed to develop in vitro tests for pathogenicity prediction of Italian blast lineages toward rice cultivars.  相似文献   
39.
The detailed catalytic mechanism by which glycosyltransferases catalyze the transfer of a glycosyl residue from a donor sugar to an acceptor is not known. Through the multiple alignment of all known eukaryotic glycogen synthases we have found an invariant 17-amino acid stretch enclosed within the most conserved region of the members of this family. This peptide includes an E-X(7)-E motif, which is highly conserved in four families of retaining glycosyltransferases. Site-directed mutagenesis was performed in human muscle glycogen synthase to analyze the roles of the two conserved Glu residues (Glu-510 and Glu-518) of the motif. Proteins were transiently expressed in COS-1 cells as fusions to green fluorescence protein. The E510A and E518A mutant proteins retained the ability to translocate from the nucleus to the cytosol in response to glucose and to bind to intracellular glycogen. Although the E518A variant had approximately 6% of the catalytic activity shown by the green fluorescence protein-human muscle glycogen synthase fusion protein, the E510A mutation inactivated the enzyme. These results led us to conclude that the E-X(7)-E motif is part of the active site of eukaryotic glycogen synthases and that both conserved Glu residues are involved in catalysis. We propose that Glu-510 may function as the nucleophile and Glu-518 as the general acid/base catalyst.  相似文献   
40.
The feeding biology of eight species of benthivorous fishes was studied in a sandy shore at Anchieta Island, south-eastern Brazilian coast. The fishes fed mainly on Amphipoda and Mysidacea crustaceans. The diet of the most abundant species, the drum Umbrina coroides, was analyzed in three standard length classes (20-55, 56-90 and 91-135 mm). This sciaenid showed an ontogenetic diet shift from Mysidacea to Amphipoda. The feeding behaviour of the sciaenid U. coroides and the gerreid Eucinostomus gula was recorded while snorkeling. During their foraging both species uncovered small organisms buried in the sand. Notwithstanding general similarities in diet, U. coroides and E. gula presented differences in feeding behaviour and morphology. Two carangid species of the genus Trachinotus differed in diet composition and consumed a larger array of food items than the remaining fish species. Differences in diet and feeding activity between the remaining benthivorous species were noted. These differences possibly reduce overlap in resource use and favour the coexistence of guilds of benthivorous fishes on sandy shores.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号