首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1127篇
  免费   59篇
  1186篇
  2023年   5篇
  2022年   12篇
  2021年   26篇
  2020年   15篇
  2019年   21篇
  2018年   23篇
  2017年   32篇
  2016年   34篇
  2015年   47篇
  2014年   54篇
  2013年   72篇
  2012年   92篇
  2011年   91篇
  2010年   60篇
  2009年   60篇
  2008年   70篇
  2007年   72篇
  2006年   70篇
  2005年   46篇
  2004年   57篇
  2003年   48篇
  2002年   48篇
  2001年   7篇
  2000年   10篇
  1999年   12篇
  1998年   7篇
  1997年   9篇
  1996年   12篇
  1995年   7篇
  1994年   10篇
  1993年   6篇
  1992年   7篇
  1991年   4篇
  1990年   4篇
  1988年   2篇
  1987年   3篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   5篇
  1981年   2篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1975年   2篇
  1974年   3篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
排序方式: 共有1186条查询结果,搜索用时 15 毫秒
81.
Palytoxin (PTX) is classified as one of the most powerful marine biotoxins (of high molecular weight and no protein origin) because it is able to interact strongly with important cellular structures influencing their function in different biological processes. This study of the effects of PTX on red blood cells (RBC) extends the knowledge about its toxicity, which concerns not only the well-known action on Na(+)/K(+)-ATPase but also band 3 protein (B3 or AE1), the role of which is essential for anion transport and for the structure, function, and metabolic integrity of the erythrocyte. The effects of PTX on RBC can be summarized as follows: it alters the anionic flux and seriously compromises not only CO(2) transport but also the metabolic modulation centered on the oxy-deoxy cycle of hemoglobin; it stabilizes the plasma membrane by preventing lipid peroxidation; and its effect does not lead to activation of caspases 3 and 8. From what is reported in steps 2 and 3, and on the basis of the results obtained on hemolysis, methemoglobin levels, and phosphatase activity, an increase of the reducing power of the erythrocytes (RBC) in the presence of PTX clearly emerges. The results have enabled us to outline some metabolic adaptations induced in the RBC by PTX.  相似文献   
82.

Background

Monogenic dementias represent a great opportunity to trace disease progression from preclinical to symptomatic stages. Frontotemporal Dementia related to Granulin (GRN) mutations presents a specific framework of brain damage, involving fronto-temporal regions and long inter-hemispheric white matter bundles. Multimodal resting-state functional MRI (rs-fMRI) is a promising tool to carefully describe disease signature from the earliest disease phase.

Objective

To define local connectivity alterations in GRN related pathology moving from the presymptomatic (asymptomatic GRN mutation carriers) to the clinical phase of the disease (GRN- related Frontotemporal Dementia).

Methods

Thirty-one GRN Thr272fs mutation carriers (14 patients with Frontotemporal Dementia and 17 asymptomatic carriers) and 38 healthy controls were recruited. Local connectivity measures (Regional Homogeneity (ReHo), Fractional Amplitude of Low Frequency Fluctuation (fALFF) and Degree Centrality (DC)) were computed, considering age and gender as nuisance variables as well as the influence of voxel-level gray matter atrophy.

Results

Asymptomatic GRN carriers had selective reduced ReHo in the left parietal region and increased ReHo in frontal regions compared to healthy controls. Considering Frontotemporal Dementia patients, all measures (ReHo, fALFF and DC) were reduced in inferior parietal, frontal lobes and posterior cingulate cortex. Considering GRN mutation carriers, an inverse correlation with age in the posterior cingulate cortex, inferior parietal lobule and orbitofrontal cortex was found.

Conclusions

GRN pathology is characterized by functional brain network alterations even decades before the clinical onset; they involve the parietal region primarily and then spread to the anterior regions of the brain, supporting the concept of molecular nexopathies.  相似文献   
83.
The birth of new neurons and their incorporation into functional circuits in the adult brain is a characteristic of many vertebrate and invertebrate organisms, including decapod crustaceans. Precursor cells maintaining life‐long proliferation in the brains of crayfish (Procambarus clarkii, Cherax destructor) and clawed lobsters (Homarus americanus) reside within a specialized niche on the ventral surface of the brain; their daughters migrate to two proliferation zones along a stream formed by processes of the niche precursors. Here they divide again, finally producing interneurons in the olfactory pathway. The present studies in P. clarkii explore (1) differential proliferative activity among the niche precursor cells with growth and aging, (2) morphological characteristics of cells in the niche and migratory streams, and (3) aspects of the cell cycle in this lineage. Morphologically symmetrical divisions of neuronal precursor cells were observed in the niche near where the migratory streams emerge, as well as in the streams and proliferation zones. The nuclei of migrating cells elongate and undergo shape changes consistent with nucleokinetic movement. LIS1, a highly conserved dynein‐binding protein, is expressed in cells in the migratory stream and neurogenic niche, implicating this protein in the translocation of crustacean brain neuronal precursor cells. Symmetrical divisions of the niche precursors and migration of both daughters raised the question of how the niche precursor pool is replenished. We present here preliminary evidence for an association between vascular cells and the niche precursors, which may relate to the life‐long growth and maintenance of the crustacean neurogenic niche. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009  相似文献   
84.
85.
86.

Background

Triple Negative Breast Cancer (TNBC) accounts for 12–24% of all breast carcinomas, and shows worse prognosis compared to other breast cancer subtypes. Molecular studies demonstrated that TNBCs are a heterogeneous group of tumors with different clinical and pathologic features, prognosis, genetic-molecular alterations and treatment responsivity. The PI3K/AKT is a major pathway involved in the regulation of cell survival and proliferation, and is the most frequently altered pathway in breast cancer, apparently with different biologic impact on specific cancer subtypes. The most common genetic abnormality is represented by PIK3CA gene activating mutations, with an overall frequency of 20–40%. The aims of our study were to investigate PIK3CA gene mutations on a large series of TNBC, to perform a wider analysis on genetic alterations involving PI3K/AKT and BRAF/RAS/MAPK pathways and to correlate the results with clinical-pathologic data.

Materials and Methods

PIK3CA mutation analysis was performed by using cobas® PIK3CA Mutation Test. EGFR, AKT1, BRAF, and KRAS genes were analyzed by sequencing. Immunohistochemistry was carried out to identify PTEN loss and to investigate for PI3K/AKT pathways components.

Results

PIK3CA mutations were detected in 23.7% of TNBC, whereas no mutations were identified in EGFR, AKT1, BRAF, and KRAS genes. Moreover, we observed PTEN loss in 11.3% of tumors. Deregulation of PI3K/AKT pathways was revealed by consistent activation of pAKT and p-p44/42 MAPK in all PIK3CA mutated TNBC.

Conclusions

Our data shows that PIK3CA mutations and PI3K/AKT pathway activation are common events in TNBC. A deeper investigation on specific TNBC genomic abnormalities might be helpful in order to select patients who would benefit from current targeted therapy strategies.  相似文献   
87.
Microsatellites are powerful markers to infer population genetic parameters. We used 10 microsatellite loci to characterize the genetic diversity and structure of 79 samples of Sclerotinia sclerotiorum isolated from four Brazilian dry bean populations and observed that eight of them were polymorphic within populations. We identified 102 different haplotypes ranging from 6 to 18 per locus. Analyses based on genetic diversity and fixation indices indicated variability among and within populations of 28.79% (FST = 28793) and 71.21%, respectively. To examine genetic relatedness among S. sclerotiorum isolates, we used internal spacer (ITS1‐5.8S‐ITS2) restriction fragment length polymorphism (PCR‐RFLP) and sequencing analysis. PCR‐RFLP analysis of these regions failed to show any genetic differences among isolates. However, we detected variability within the sequence, which does not support the hypothesis of clonal populations within each population. High variability within and among populations may indicate the introduction of new genotypes in the areas analysed, in addition to the occurrence of clonal and sexual reproduction in the populations of S. sclerotiorum in the Brazilian Cerrado.  相似文献   
88.
89.
Among the different T-cell receptor (TCR) BV20S1 polymorphisms, nucleotide substitution at position 524 results in the introduction of a stop codon, whose potential functional relevance is still unknown. We have recently showed in Sardinian subjects the most elevated allele frequency ever reported worldwide for this “null allele” (0.44). As this variant generates a gap in the TCR repertoire, this preliminary finding prompted us to further analyze the role of this polymorphism in the susceptibility to type 1 diabetes (T1D) and multiple sclerosis (MS), which are extremely common in this population. With this aim, we evaluated the influence of the TCRBV20S1 polymorphism by assessing it with the transmission disequilibirum test (TDT) in 652 T1D and 616 MS families, without detecting any significant difference. We conclude that the high frequency of this null allele in Sardinia is not directly related to the high incidence of these autoimmune diseases observed in this founder population.  相似文献   
90.
In multicellular organisms, cells are crowded together in organized communities, surrounded by an interstitial fluid of extremely limited volume. Local communication between adjacent cells is known to occur through gap junctions in cells that are physically connected, or through the release of paracrine signaling molecules (e.g. ATP, glutamate, nitric oxide) that diffuse to their target receptors through the extracellular microenvironment. Recent evidence hints that calcium ions may possibly be added to the list of paracrine messengers that allow cells to communicate with one another. Local fluctuations in extracellular [Ca2+] can be generated as a consequence of intracellular Ca2+ signaling events, owing to the activation of Ca2+ influx and efflux pathways at the plasma membrane. In intact tissues, where the interstitial volumes between cells are much smaller than the cells themselves, this can result in significant alterations in external [Ca2+]. This article will explore emerging evidence that these extracellular [Ca2+] changes can be detected by the extracellular calcium-sensing receptor (CaR) on adjacent cells, forming the basis for a paracrine signaling system. Such a mechanism could potentially provide CaR-expressing cells with the means to sense the Ca2+ signaling status of their neighbors, and expand the utility of the intracellular Ca2+ signal to a domain outside the cell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号