首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2100篇
  免费   210篇
  国内免费   1篇
  2023年   7篇
  2022年   25篇
  2021年   33篇
  2020年   23篇
  2019年   26篇
  2018年   37篇
  2017年   29篇
  2016年   62篇
  2015年   96篇
  2014年   107篇
  2013年   119篇
  2012年   180篇
  2011年   149篇
  2010年   98篇
  2009年   98篇
  2008年   143篇
  2007年   141篇
  2006年   126篇
  2005年   123篇
  2004年   99篇
  2003年   93篇
  2002年   99篇
  2001年   31篇
  2000年   29篇
  1999年   31篇
  1998年   39篇
  1997年   16篇
  1996年   13篇
  1995年   9篇
  1994年   9篇
  1993年   21篇
  1992年   19篇
  1991年   16篇
  1990年   8篇
  1989年   11篇
  1988年   13篇
  1987年   13篇
  1986年   7篇
  1985年   6篇
  1984年   8篇
  1983年   10篇
  1982年   13篇
  1981年   9篇
  1979年   9篇
  1978年   4篇
  1977年   4篇
  1976年   9篇
  1975年   7篇
  1974年   5篇
  1972年   3篇
排序方式: 共有2311条查询结果,搜索用时 218 毫秒
31.
The aim of this study was to investigate the ability of Pantoea agglomerans, a plant growth-promoting bacterium, to colonize various regions and tissues of the wheat plant (Triticum aestivum L.) by using different inoculation methods and inoculum concentrations. In addition, the enzyme-linked immunosorbent assay (ELISA) and transmission electron microscopy (TEM) were used to determine: (a) the ability of the bacterial cells to grow and survive both on the surface and within internal tissue of the plant and (b) the response of the plant to bacterial infection. After inoculation, cells of the diazotrophic bacterial strain P. agglomerans were found to be located in roots, stems and leaves. Colony development of bacterial cells was only detected within intercellular spaces of the root and on the root surface. However, single bacterial cells were observed in leaves and stems on the surface of the epidermis, in the vicinity to stomatal cells, within intercellular spaces of the mesophyll and within xylem vessels. Inoculated bacterial cells were found to be able to enter host tissues, to multiply in the plant and to maintain a delicate relationship between endophyte and host. The density of bacterial settlement in the plant in all experiments was about 106 to 107 cells per mL root or shoot sap. Establishment was confirmed by a low coefficient of variation of ELISA means at these concentrations.  相似文献   
32.
33.
Photosynthetically-active protoplasts isolated from isogenic sets of diploid-tetraploid and tetraploid-octoploid alfalfa (Medicago sativa L.) leaves were used to investigate the consequences of polyploidization on several aspects related to photosynthesis at the cellular level. Protoplasts from the tetraploid population contained twice the amount of DNA, ribulose-1,5-bisphosphate carboxylase (RuBPCase), chlorophyll (Chl), and chloroplasts per cell compared to protoplasts from the diploid population. Although protoplasts from the octoploid population contained nearly twice the number of chloroplasts and amount of Chl per cell as tetraploid protoplasts, the amount of DNA and RuBPCase per octoploid cell was only 50% higher than in protoplasts from the tetraploid population. The rate of CO2-dependent O2 evolution in protoplasts nearly doubled with an increase in ploidy from the diploid to tetraploid level, but increased only 67% with an increase in ploidy from the tetraploid to octoploid level. Whereas leaves and protoplasts had similar increases in RuBPCase, DNA, and Chl with increase in ploidy level, it was concluded that increased cell volume rather than increased cell number per leaf is responsible for the increase in leaf size with ploidy.  相似文献   
34.
Partitioning and translocation of photosynthates were compared between a nonmutant genotype (Oh 43) of corn (Zea mays L.) and two starch-deficient endosperm mutants, shruken-2 (sh2) and brittle-1 (bt1), with similar genetic backgrounds. Steady-state levels of 14CO2 were supplied to source leaf blades for 2-hour periods, followed by separation and identification of 14C-assimilates in the leaf, kernel, and along the translocation path. An average of 14.1% of the total 14C assimilated was translocated to normal kernels, versus 0.9% in sh2 kernels and 2.6% in btl kernels. Over 98% of the kernel 14C was in free sugars, and further analysis of nonmutant kernels showed 46% of this label in glucose and fructose. Source leaves of mutant plants exported significantly less total photosynthate (24.0% and 36.3% in sh2 and bt1 compared to 48.0% in the normal plants) and accumulated greater portions of label in the insoluble (starch) fraction. Mutant plants also showed lower percentages of photosynthate in the leaf blade and sheath below the exposed blade area. The starch-deficient endosperm mutants influence the partitioning and translocation of photosynthates and provide a valuable tool for the study of source-sink relations.  相似文献   
35.
Chick oviduct progesterone-receptor proteins were treated in cytosol with the reversible cross-linking reagent methyl 4-mercaptobutyrimidate. The product of the reaction was a 7S complex that could be detected and recovered after sucrose-density-gradient centrifugation in 0.3M-KCl. The extent of the reaction was dependent on the concentration of methyl 4-mercaptobutyrimidate and independent of the presence of bound hormone, since unlabelled receptors could also be cross-linked. The cross-linking reaction required conditions in which the cytosol 6S complex was preserved. A Stokes radius of 7.3 nm was determined by gel filtration in Agarose A-1.5 m in 0.3 M-KCl. The sedimentation coefficient, which was also determined in 0.3 M-KCl, allowed us to calculate a mol. wt. of 228,000. We were also able to cross-link partially purified receptor forms isolated by using an Agarose A-15 m column. On reduction with beta-mercaptoethanol the complex broke down to 4S monomers that were identified by DEAE-cellulose and phosphocellulose chromatography, adsorption on DNA-cellulose and gel filtration in an Agarose A-1.5 m column. In most cases, A and B receptor proteins were released in equivalent amounts, implying that the cross-linked form was an A-B complex.  相似文献   
36.
Subcellular fractionation of oviduct tissue from estrogen-treated chicks indicated that the bulk of the protein kinase activity of this tissue is located in the cytoplasmic and nuclear fractions, DEAE-cellulose chromatography of cytosol revealed a major peak of cAMP stimulatable activity eluting at 0.2 M KCl. This peak was further characterized and found to exhibit properties consistent with cytoplasmic cAMP dependent protein kinases isolated from other tissues; it had a Km for ATP of 2 X 10(-5) M, preferred basic proteins such as histones, as substrate, and had a M of 165 000. Addition of 10(-6) M cAMP caused the holoenzyme to dissociate into cAMP binding regulatory subunit and a protein kinase catalytic subunit. Extraction of purified oviduct nuclei with 0.3 M KCl released greater than 80% of the kinase activity in this fraction. Upon elution from phospho-cellulose, the nuclear extract was resolved into two equal peaks of kinase activity (designated I and II). Peak I had a sedimentation coefficient of 3S and a Km for ATP of 13 muM. while peak II had a sedimentation coefficient of 6S and a Km for ATP of 9 muM. Both enzymes preferred alpha-casein as a substrate over phosvitin or whole histone, although they exhibited different salt-activity profiles. The cytoplasmic and nuclear enzymes were well separated on phospho-cellulose and this resin was used to quantitate the amount of cAMP dependent histone kinase activity in the nucleus and the amount of casein kinase activity in the cytosol. Protein kinase activity in nuclei from estrogen-stimulated chicks was found to be 40% greater than hormone-withdrawn animals. This increase in activity was not due to translocation of the cytoplasmic protein kinase in response to hormone, but to an increase in nuclear (casein) kinase activity. During the course of this work, we observed small but significant amounts of cAMP binding activity very tightly bound to the nuclear fraction. Solubilization of the binding activity by sonication in high salt allowed comparison studies to be performed which indicated that the nuclear binding protein is identical with the cytoplasmic cAMP binding regulatory subunit. The possible role of the nuclear binding activity is discussed.  相似文献   
37.
Cytoplasmic progesterone receptors of chick oviduct have been purified in 8% yield by steroid affinity and ion exchange chromatography. The affinity resin, deoxycorticosterone-bovine serum albumin-Sepharose, binds progesterone receptors with high affinity (KD equals 8 times 10-minus 10 M) and its use resulted in a greater than 2000-fold purification over the starting material in a single step. DEAE-Sephadex A-50 chromatography was then used to achieve final purification. NA dodecyl-SO4 gel electrophoresis and DEAE-cellulose chromatography showed that the purified receptors contained both of the previously described 4 S progesterone binding components in near equal amounts. Na dodocyl-SO4 gel electrophoresis also showed that these components consisted of single polypeptide chains with molecular weights of 110, 000 (A component) and 117, 000 (B component). There was no evidence for subunits of lower molecular weight. The purified materials have identical hormone-binding kinetics and steroid specificity to crude cytosol receptors. The isolated receptors retain the three biologically important properties exhibited by progesterone binding components present in cruder preparations: they bind specifically to (a) nuclei (KD equals 1.1 times 10-minus 9 M, 10, 000 sites per nucleus); (b) chromatin (KD equals 3 times 10-minus 9 M, 2000 sites per pg of DNA-);and (C) DNA.  相似文献   
38.
Hox genes are key regulators of anterior-posterior axis patterning and have a major role in hindbrain development. The zebrafish Hox4 paralogs have strong overlapping activities in hindbrain rhombomeres 7 and 8, in the spinal cord and in the pharyngeal arches. With the aim to predict enhancers that act on the hoxa4a, hoxb4a, hoxc4a and hoxd4a genes, we used sequence conservation around the Hox4 genes to analyze all fish:human conserved non-coding sequences by reporter assays in stable zebrafish transgenesis. Thirty-four elements were functionally tested in GFP reporter gene constructs and more than 100 F1 lines were analyzed to establish a correlation between sequence conservation and cis-regulatory function, constituting a catalog of Hox4 CNEs. Sixteen tissue-specific enhancers could be identified. Multiple alignments of the CNEs revealed paralogous cis-regulatory sequences, however, the CNE sequence similarities were found not to correlate with tissue specificity. To identify ancestral enhancers that direct Hox4 gene activity, genome sequence alignments of mammals, teleosts, horn shark and the cephalochordate amphioxus, which is the most basal extant chordate possessing a single prototypical Hox cluster, were performed. Three elements were identified and two of them exhibited regulatory activity in transgenic zebrafish, however revealing no specificity. Our data show that the approach to identify cis-regulatory sequences by genome sequence alignments and subsequent testing in zebrafish transgenesis can be used to define enhancers within the Hox clusters and that these have significantly diverged in their function during evolution.  相似文献   
39.
40.
In humans, the L-cysteine desulfurase NFS1 plays a crucial role in the mitochondrial iron-sulfur cluster biosynthesis and in the thiomodification of mitochondrial and cytosolic tRNAs. We have previously demonstrated that purified NFS1 is able to transfer sulfur to the C-terminal domain of MOCS3, a cytosolic protein involved in molybdenum cofactor biosynthesis and tRNA thiolation. However, no direct evidence existed so far for the interaction of NFS1 and MOCS3 in the cytosol of human cells. Here, we present direct data to show the interaction of NFS1 and MOCS3 in the cytosol of human cells using Förster resonance energy transfer and a split-EGFP system. The colocalization of NFS1 and MOCS3 in the cytosol was confirmed by immunodetection of fractionated cells and localization studies using confocal fluorescence microscopy. Purified NFS1 was used to reconstitute the lacking molybdoenzyme activity of the Neurospora crassa nit-1 mutant, giving additional evidence that NFS1 is the sulfur donor for Moco biosynthesis in eukaryotes in general.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号