首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1589篇
  免费   148篇
  1737篇
  2023年   5篇
  2022年   17篇
  2021年   27篇
  2020年   16篇
  2019年   19篇
  2018年   31篇
  2017年   22篇
  2016年   53篇
  2015年   72篇
  2014年   95篇
  2013年   98篇
  2012年   146篇
  2011年   120篇
  2010年   88篇
  2009年   78篇
  2008年   120篇
  2007年   123篇
  2006年   102篇
  2005年   104篇
  2004年   77篇
  2003年   73篇
  2002年   90篇
  2001年   15篇
  2000年   14篇
  1999年   20篇
  1998年   32篇
  1997年   12篇
  1996年   12篇
  1995年   8篇
  1994年   6篇
  1993年   14篇
  1992年   6篇
  1991年   5篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1982年   2篇
  1976年   2篇
  1975年   1篇
  1971年   1篇
排序方式: 共有1737条查询结果,搜索用时 15 毫秒
61.
The aim of this study was to compare two major hypotheses concerning the formation of bacterial community composition (BCC) at the local scale, i.e., whether BCC is determined by the prevailing local environmental conditions or by “metacommunity processes.” A batch culture experiment where bacteria from eight distinctly different aquatic habitats were regrown under identical conditions was performed to test to what extent similar communities develop under similar selective pressure. Differently composed communities emerged from different inoculum communities, as determined by terminal restriction fragment length polymorphism analysis of the 16S rRNA gene. There was no indication that similarity increased between communities upon growth under identical conditions compared to that for growth at the ambient sampling sites. This suggests that the history and distribution of taxa within the source communities were stronger regulating factors of BCC than the environmental conditions. Moreover, differently composed communities were different with regard to specific functions, such as enzyme activities, but maintained similar broad-scale functions, such as biomass production and respiration.  相似文献   
62.
Argonaute proteins are essential components of the molecular machinery that drives RNA silencing. In Drosophila, different members of the Argonaute family of proteins have been assigned to distinct RNA silencing pathways. While Ago1 is required for microRNA function, Ago2 is a crucial component of the RNA-induced silencing complex in siRNA-triggered RNA interference. Drosophila Ago2 contains an unusual amino-terminus with two types of imperfect glutamine-rich repeats (GRRs) of unknown function. Here we show that the GRRs of Ago2 are essential for the normal function of the protein. Alleles with reduced numbers of GRRs cause specific disruptions in two morphogenetic processes associated with the midblastula transition: membrane growth and microtubule-based organelle transport. These defects do not appear to result from disruption of siRNA-dependent processes but rather suggest an interference of the mutant Ago2 proteins in an Ago1-dependent pathway. Using loss-of-function alleles, we further demonstrate that Ago1 and Ago2 act in a partially redundant manner to control the expression of the segment-polarity gene wingless in the early embryo. Our findings argue against a strict separation of Ago1 and Ago2 functions and suggest that these proteins act in concert to control key steps of the midblastula transition and of segmental patterning.  相似文献   
63.

Background

The number of patients seeking health care is a central indicator that may serve several different purposes: (1) as a proxy for the impact on the burden of the primary care system; (2) as a starting point to estimate the number of persons ill with influenza; (3) as the denominator data for the calculation of case fatality rate and the proportion hospitalized (severity indicators); (4) for economic calculations. In addition, reliable estimates of burden of disease and on the health care system are essential to communicate the impact of influenza to health care professionals, public health professionals and to the public.

Methodology/Principal Findings

Using German syndromic surveillance data, we have developed a novel approach to describe the seasonal variation of medically attended acute respiratory infections (MAARI) and estimate the excess MAARI attributable to influenza. The weekly excess inside a period of influenza circulation is estimated as the difference between the actual MAARI and a MAARI-baseline, which is established using a cyclic regression model for counts. As a result, we estimated the highest ARI burden within the last 10 years for the influenza season 2004/05 with an excess of 7.5 million outpatient visits (CI95% 6.8–8.0). In contrast, the pandemic wave 2009 accounted for one third of this burden with an excess of 2.4 million (CI95% 1.9–2.8). Estimates can be produced for different age groups, different geographic regions in Germany and also in real time during the influenza waves.  相似文献   
64.
65.
The structural changes of ferrous Cyt-c that are induced by binding to SDS micelles, phospholipid vesicles, DeTAB, and GuHCl as well as by high temperatures and changes in the pH have been studied by RR and UV-Vis absorption spectroscopies. Four species have been identified in which the native methionine-80 ligand is removed from the heme iron. This coordination site is either occupied by a histidine (His-33 or His-26) to form a 6cLS configuration, which is the prevailing species in GuHCl at pH 7.0 and ambient temperature, or remains vacant to yield a 5cHS configuration. The three identified 5cHS species differ with respect to the hydrogen-bond interactions of the proximal histidine ligand (His-18) and include a nonhydrogen-bonded, a hydrogen-bonded, and a deprotonated imidazole ring. These structural motifs have been found irrespective of the unfolding conditions used. An unambiguous spectroscopic distinction of these 5cHS species is possible on the basis of the Fe-N(imidazole) stretching vibrations, the RR bands in the region between 1300 and 1650 cm(-1), and the electronic transitions in the Soret- and Q-band regions. In acid and neutral solutions, the species with a hydrogen-bonded and a nonhydrogen-bonded His-18 prevail, whereas in alkaline solutions a configuration with a deprotonated His-18 ligand is also observed. Upon lowering the pH or increasing the temperature in GuHCl solutions, the structure on the proximal side of the heme is perturbed, resulting in a loss of the hydrogen-bond interactions of the His-18 ligand. Conversely, the hydrogen-bonded His-18 of ferrous Cyt-c is stabilized by electrostatic interactions which increase in strength from phospholipid vesicles to SDS micelles. The results here suggest that unfolding of Cyt-c is initiated by the rupture of the Fe-Met-80 bond and structural reorganizations on the distal side of the heme pocket, whereas the proximal part is only affected in a later stage of the denaturation process.  相似文献   
66.
Guard cells dynamically adjust their shape in order to regulate photosynthetic gas exchange, respiration rates and defend against pathogen entry. Cell shape changes are determined by the interplay of cell wall material properties and turgor pressure. To investigate this relationship between turgor pressure, cell wall properties and cell shape, we focused on kidney‐shaped stomata and developed a biomechanical model of a guard cell pair. Treating the cell wall as a composite of the pectin‐rich cell wall matrix embedded with cellulose microfibrils, we show that strong, circumferentially oriented fibres are critical for opening. We find that the opening dynamics are dictated by the mechanical stress response of the cell wall matrix, and as the turgor rises, the pectinaceous matrix stiffens. We validate these predictions with stomatal opening experiments in selected Arabidopsis cell wall mutants. Thus, using a computational framework that combines a 3D biomechanical model with parameter optimization, we demonstrate how to exploit subtle shape changes to infer cell wall material properties. Our findings reveal that proper stomatal dynamics are built on two key properties of the cell wall, namely anisotropy in the form of hoop reinforcement and strain stiffening.  相似文献   
67.
68.
Receptor‐like proteins (RLPs), forming an important group of transmembrane receptors in plants, play roles in development and immunity. RLPs contain extracellular leucine‐rich repeats (LRRs) and, in contrast with receptor‐like kinases (RLKs), lack a cytoplasmic kinase required for the initiation of downstream signalling. Recent studies have revealed that the RLK SOBIR1/EVR (SUPPRESSOR OF BIR1‐1/EVERSHED) specifically interacts with RLPs. SOBIR1 stabilizes RLPs and is required for their function. However, the mechanism by which SOBIR1 associates with RLPs and regulates RLP function remains unknown. The Cf immune receptors of tomato (Solanum lycopersicum), mediating resistance to the fungus Cladosporium fulvum, are RLPs that also interact with SOBIR1. Here, we show that both the LRR and kinase domain of SOBIR1 are dispensable for association with the RLP Cf‐4, whereas the highly conserved GxxxGxxxG motif present in the transmembrane domain of SOBIR1 is essential for its interaction with Cf‐4 and additional RLPs. Complementation assays in Nicotiana benthamiana, in which endogenous SOBIR1 levels were knocked down by virus‐induced gene silencing, showed that the LRR domain as well as the kinase activity of SOBIR1 are required for the Cf‐4/Avr4‐triggered hypersensitive response (HR). In contrast, the LRRs and kinase activity of SOBIR1 are not required for facilitation of Cf‐4 accumulation. Together, these results suggest that, in addition to being a stabilizing scaffold for RLPs, SOBIR1 is also required for the initiation of downstream signalling through its kinase domain.  相似文献   
69.
Here we identify the recruitment of solvent ions to lipid membranes as the dominant regulator of lipid phase behavior. Our data demonstrate that binding of counterions to charged lipids promotes the formation of lamellar membranes, whereas their absence can induce fusion. The mechanism applies to anionic and cationic liposomes, as well as the recently introduced amphoteric liposomes. In the latter, an additional pH-dependent lipid salt formation between anionic and cationic lipids must occur, as indicated by the depletion of membrane-bound ions in a zone around pH 5. Amphoteric liposomes fuse under these conditions but form lamellar structures at both lower and higher pH values. The integration of these observations into the classic lipid shape theory yielded a quantitative link between lipid and solvent composition and the physical state of the lipid assembly. The key parameter of the new model, κ(pH), describes the membrane phase behavior of charged membranes in response to their ion loading in a quantitative way.  相似文献   
70.
Recently, research on olfactory functions in attention-deficit/hyperactivity disorder (ADHD) has become prominent, whereas gustation has never been investigated. Increased odor sensitivity was found in medication-na?ve children with ADHD, but not in adult ADHD, which might be due to a dopaminergic dysregulation presumed to underlie this disorder. Taste sensitivity, in particular bitter sensitivity as a hereditary trait, also might be altered in ADHD. To examine olfactory and gustatory functions in adult ADHD patients, we assessed odor sensitivity by Sniffin' Sticks, taste sensitivity by taste strips, and bitter sensitivity by the one-solution test in women with ADHD (n = 12), Bulimia Nervosa (n = 12), and healthy control women (n = 12). Bulimia Nervosa as second patient group was included to control for effects of impulsivity. Preliminary results indicate that ADHD patients were significantly more often classified as tasters, i.e. perceived the bitter taste as more intense, compared to both bulimic patients and healthy controls. No group differences were found with regard to general odor and taste sensitivity. It is proposed that the higher frequency of tasters in ADHD patients might underlie a genetic variation of the bitter receptor-dependent signaling pathway associated with ADHD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号