首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1585篇
  免费   146篇
  1731篇
  2023年   5篇
  2022年   17篇
  2021年   27篇
  2020年   16篇
  2019年   19篇
  2018年   31篇
  2017年   22篇
  2016年   53篇
  2015年   73篇
  2014年   95篇
  2013年   99篇
  2012年   145篇
  2011年   120篇
  2010年   88篇
  2009年   78篇
  2008年   121篇
  2007年   123篇
  2006年   101篇
  2005年   104篇
  2004年   75篇
  2003年   72篇
  2002年   89篇
  2001年   15篇
  2000年   14篇
  1999年   19篇
  1998年   31篇
  1997年   11篇
  1996年   12篇
  1995年   8篇
  1994年   6篇
  1993年   14篇
  1992年   6篇
  1991年   5篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1982年   2篇
  1976年   2篇
  1975年   1篇
  1971年   1篇
排序方式: 共有1731条查询结果,搜索用时 15 毫秒
21.
The main siderophores produced by streptomycetes are desferrioxamines. Here we show that Streptomyces sp. ATCC 700974 and several Streptomyces griseus strains, in addition, synthesize a hitherto unknown siderophore with a catechol-peptide structure, named griseobactin. The production is repressed by iron. We sequenced a 26-kb DNA region comprising a siderophore biosynthetic gene cluster encoding proteins similar to DhbABCEFG, which are involved in the biosynthesis of 2,3-dihydroxybenzoate (DHBA) and in the incorporation of DHBA into siderophores via a nonribosomal peptide synthetase. Adjacent to the biosynthesis genes are genes that encode proteins for the secretion, uptake, and degradation of siderophores. To correlate the gene cluster with griseobactin synthesis, the dhb genes in ATCC 700974 were disrupted. The resulting mutants no longer synthesized DHBA and griseobactin; production of both was restored by complementation with the dhb genes. Heterologous expression of the dhb genes or of the entire griseobactin biosynthesis gene cluster in the catechol-negative strain Streptomyces lividans TK23 resulted in the synthesis and secretion of DHBA or griseobactin, respectively, suggesting that these genes are sufficient for DHBA and griseobactin biosynthesis. Griseobactin was purified and characterized; its structure is consistent with a cyclic and, to a lesser extent, linear form of the trimeric ester of 2,3-dihydroxybenzoyl-arginyl-threonine complexed with aluminum under iron-limiting conditions. This is the first report identifying the gene cluster for the biosynthesis of DHBA and a catechol siderophore in Streptomyces.Iron is an essential element for the growth and proliferation of nearly all microorganisms. In the presence of oxygen, the soluble ferrous iron is readily oxidized to its ferric form, which exists predominantly as a highly insoluble hydroxide complex at neutral pH. To overcome iron limitation, many bacteria synthesize and secrete low-molecular-weight, high-affinity ferric iron chelators, called siderophores (38, 53). Following the chelation of Fe3+ in the medium, the iron-siderophore complex is actively taken up by its cognate ABC transport system, and Fe3+ is subsequently released by reduction to Fe2+ and/or by hydrolysis of the siderophore (28, 32, 36). The three main classes of siderophores contain catecholates, hydroxamates, or (α-hydroxy-)carboxylates as iron-coordinating ligands, but mixed siderophores and siderophores containing other functional groups, such as diphenolates, imidazoles, and thiazolines, have also been found (16, 38).Siderophores containing peptide moieties are synthesized by proteins belonging to the nonribosomal peptide synthetase (NRPS) family (16, 38). These multimodular enzymes function as enzymatic assembly lines in which the order of the modules usually determines the order of the amino acids incorporated into the peptide (19, 34). Each module contains the complete information for an elongation step combining the catalytic functions for the activation of the amino acid by the adenylation (A) domain, the tethering of the corresponding adenylate to the terminal thiol of the enzyme-bound 4′-phosphopantetheinyl (4′-PP) cofactor by the peptidyl carrier protein (PCP) domain, and the formation of the peptide bond by the condensation (C) domain (26, 34, 52). At the end, the product is released by the C-terminal thioesterase (TE) domain by hydrolysis or by cyclization via intramolecular condensation. Each adenylation domain recognizes a specific amino acid, and its substrate specificity can be predicted by its sequence. An NRPS specificity-conferring code consisting of 10 nonadjacent amino acid residues in the A domain has been proposed (49). Exceptions to the “colinearity-rule” (19) have been discovered. For example, in the biosynthesis of the siderophores enterobactin and bacillibactin, all the modules in the NRPS are used iteratively, and the TE domain stitches the chains together into a cyclic product (35, 45). Enterobactin is the trilactone of 2,3-dihydroxybenzoyl-serine, and bacillibactin is the lactone of 2,3-dihydroxybenzoyl-glycyl-threonine.The typical siderophores produced by streptomycetes are desferrioxamines (24), and the genes encoding the enzymes for their biosynthesis have been identified (5). Recently, structurally different siderophores have been reported to be coproduced with desferrioxamines in some species, e.g., coelichelin in Streptomyces coelicolor (9, 30) and enterobactin in Streptomyces tendae (18). The genes encoding the proteins for the biosynthesis of enterobactin in S. tendae remain unknown.Here we describe the gene cluster for the biosynthesis of a new siderophore, named griseobactin, produced by Streptomyces sp. strain ATCC 700974 and some strains of Streptomyces griseus. By sequencing two cosmids isolated from a Streptomyces sp. strain ATCC 700974 genomic library, we assigned the encoded proteins to enzymes that convert chorismate to 2,3-dihydroxybenzoate (DHBA), and to proteins involved in nonribosomal peptide biosynthesis and in the export, uptake, and utilization of siderophores. Knockout mutagenesis and heterologous expression confirmed the requirement of this gene cluster for the biosynthesis of griseobactin. This is the first report on the identification of the genes responsible for DHBA and catechol siderophore biosynthesis in Streptomyces.  相似文献   
22.
The plant trans-Golgi network/early endosome (TGN/EE) is a major hub for secretory and endocytic trafficking with complex molecular mechanisms controlling sorting and transport of cargo. Vacuolar transport from the TGN/EE to multivesicular bodies/late endosomes (MVBs/LEs) is assumed to occur via clathrin-coated vesicles, although direct proof for their participation is missing. Here, we present evidence that post-TGN transport toward lytic vacuoles occurs independently of clathrin and that MVBs/LEs are derived from the TGN/EE through maturation. We show that the V-ATPase inhibitor concanamycin A significantly reduces the number of MVBs and causes TGN and MVB markers to colocalize in Arabidopsis thaliana roots. Ultrastructural analysis reveals the formation of MVBs from the TGN/EE and their fusion with the vacuole. The localization of the ESCRT components VPS28, VPS22, and VPS2 at the TGN/EE and MVBs/LEs indicates that the formation of intraluminal vesicles starts already at the TGN/EE. Accordingly, a dominant-negative mutant of VPS2 causes TGN and MVB markers to colocalize and blocks vacuolar transport. RNA interference-mediated knockdown of the annexin ANNAT3 also yields the same phenotype. Together, these data indicate that MVBs originate from the TGN/EE in a process that requires the action of ESCRT for the formation of intraluminal vesicles and annexins for the final step of releasing MVBs as a transport carrier to the vacuole.  相似文献   
23.
The septins are a conserved family of GTP-binding proteins that, in the baker''s yeast, assemble into a highly ordered array of filaments at the mother bud neck. These filaments undergo significant structural rearrangements during the cell cycle. We aimed at identifying key components that are involved in or regulate the transitions of the septins. By combining cell synchronization and quantitative affinity-purification mass-spectrometry, we performed a screen for specific interaction partners of the septins at three distinct stages of the cell cycle. A total of 83 interaction partners of the septins were assigned. Surprisingly, we detected DNA-interacting/nuclear proteins and proteins involved in ribosome biogenesis and protein synthesis predominantly present in alpha-factor arrested that do not display an assembled septin structure. Furthermore, two distinct sets of regulatory proteins that are specific for cells at S-phase with a stable septin collar or at mitosis with split septin rings were identified.Complementary methods like SPLIFF and immunoprecipitation allowed us to more exactly define the spatial and temporal characteristics of selected hits of the AP-MS screen.  相似文献   
24.
25.
Eph receptor tyrosine kinases (RTKs) mediate numerous developmental processes. Their activity is regulated by auto-phosphorylation on two tyrosines within the juxtamembrane segment (JMS) immediately N-terminal to the kinase domain (KD). Here, we probe the molecular details of Eph kinase activation through mutational analysis, X-ray crystallography and NMR spectroscopy on auto-inhibited and active EphB2 and EphA4 fragments. We show that a Tyr750Ala gain-of-function mutation in the KD and JMS phosphorylation independently induce disorder of the JMS and its dissociation from the KD. Our X-ray analyses demonstrate that this occurs without major conformational changes to the KD and with only partial ordering of the KD activation segment. However, conformational exchange for helix alphaC in the N-terminal KD lobe and for the activation segment, coupled with increased inter-lobe dynamics, is observed upon kinase activation in our NMR analyses. Overall, our results suggest that a change in inter-lobe dynamics and the sampling of catalytically competent conformations for helix alphaC and the activation segment rather than a transition to a static active conformation underlies Eph RTK activation.  相似文献   
26.
Merozoites of malaria parasites invade red blood cells (RBCs), where they multiply by schizogony, undergoing development through ring, trophozoite and schizont stages that are responsible for malaria pathogenesis. Here, we report that a protein kinase-mediated signalling pathway involving host RBC PAK1 and MEK1, which do not have orthologues in the Plasmodium kinome, is selectively stimulated in Plasmodium falciparum-infected (versus uninfected) RBCs, as determined by the use of phospho-specific antibodies directed against the activated forms of these enzymes. Pharmacological interference with host MEK and PAK function using highly specific allosteric inhibitors in their known cellular IC50 ranges results in parasite death. Furthermore, MEK inhibitors have parasiticidal effects in vitro on hepatocyte and erythrocyte stages of the rodent malaria parasite Plasmodium berghei, indicating conservation of this subversive strategy in malaria parasites. These findings have profound implications for the development of novel strategies for antimalarial chemotherapy.  相似文献   
27.

Background

Very recently, a novel type 2 diabetes risk gene, i.e., MTNR1B, was identified and reported to affect fasting glycemia. Using our thoroughly phenotyped cohort of subjects at an increased risk for type 2 diabetes, we assessed the association of common genetic variation within the MTNR1B locus with obesity and prediabetes traits, namely impaired insulin secretion and insulin resistance.

Methodology/Principal Findings

We genotyped 1,578 non-diabetic subjects, metabolically characterized by oral glucose tolerance test, for five tagging single nucleotide polymorphisms (SNPs) covering 100% of common genetic variation (minor allele frequency >0.05) within the MTNR1B locus (rs10830962, rs4753426, rs12804291, rs10830963, rs3781638). In a subgroup (N = 513), insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamp, and in a further subgroup (N = 301), glucose-stimulated insulin secretion was determined by intravenous glucose tolerance test. After appropriate adjustment for confounding variables and Bonferroni correction for multiple comparisons, none of the tagging SNPs was reliably associated with measures of adiposity. SNPs rs10830962, rs4753426, and rs10830963 were significantly associated with higher fasting plasma glucose concentrations (p<0.0001) and reduced OGTT- and IVGTT-induced insulin release (p≤0.0007 and p≤0.01, respectively). By contrast, SNP rs3781638 displayed significant association with lower fasting plasma glucose levels and increased OGTT-induced insulin release (p<0.0001 and p≤0.0002, respectively). Moreover, SNP rs3781638 revealed significant association with elevated fasting- and OGTT-derived insulin sensitivity (p≤0.0021). None of the MTNR1B tagging SNPs altered proinsulin-to-insulin conversion.

Conclusions/Significance

In conclusion, common genetic variation within MTNR1B determines glucose-stimulated insulin secretion and plasma glucose concentrations. Their impact on β-cell function might represent the prevailing pathomechanism how MTNR1B variants increase the type 2 diabetes risk.  相似文献   
28.
We have reconstituted the Apaf-1-activated apoptosis mechanism in Sacchromyces cerevisiae such that the presence of a constitutively active form of Apaf-1 together with both Caspase-9 and Caspase-3 results in yeast death. This system is a good model of the Apaf-1-activated pathway in mammalian cells: MIHA (XIAP/hILP), and to a lesser degree MIHB (c-IAP1/HIAP2) and MIHC (c-IAP-2/HIAP1) can inhibit caspases in this system, and protection by IAPs (inhibitor of apoptosis) can be abrogated by coexpression of the Drosophila pro-apoptotic proteins HID and GRIM or the mammalian protein DIABLO/Smac. Using this system we demonstrate that unlike DIABLO/Smac, other proteins which interact with mammalian IAPs (TAB-1, Zap-1, Traf-1 and Traf-2) do not act to antagonise IAP- mediated caspase inhibition.  相似文献   
29.
Summary AClostridium thermocellum gene directing the synthesis of a thermostable -glucanase was localized on a 1.9-kb DNA fragment by subcloning intoEscherichia coli plasmid vectors. The enzyme was highly efficient in degrading glucans with alternating -1, 3- and -1,4-linkages such as lichenan and barley glucan. It was also active towards the -1, 3-glucan laminarin, but lacked activity on cellulosic substrates and -glucans. The enzyme was therefore classified as -1, 3-glucanase (laminarinase) and the corresponding gene was designatedlicA. With barley -glucan as substrate the enzyme had a pH optimum around pH 6.5 and a temperature optimum at 65°C. It was stable for several hours at 60°C in the absence of substrate.  相似文献   
30.

Background

Alpha-synuclein is a key protein implicated in the pathogenesis of Parkinson's disease (PD). It is the main component of the Lewy bodies, a cardinal neuropathological feature in the disease. In addition, whole locus multiplications and point mutations in the gene coding for alpha-synuclein lead to autosomal dominant monogenic PD. Over the past decade, research on PD has impelled the development of new animal models based on alpha-synuclein. In this context, transgenic mouse lines have failed to reproduce several hallmarks of PD, especially the strong and progressive dopaminergic neurodegeneration over time that occurs in the patients. In contrast, viral vector-based models in rats and non-human primates display prominent, although highly variable, nigral dopaminergic neuron loss. However, the few studies available on viral vector-mediated overexpression of alpha-synuclein in mice report a weak neurodegenerative process and no clear Lewy body-like pathology. To address this issue, we performed a comprehensive comparative study of alpha-synuclein overexpression by means of recombinant adeno-associated viral vectors serotype 2/7 (rAAV2/7) at different doses in adult mouse substantia nigra.

Results

We noted a significant and dose-dependent alpha-synucleinopathy over time upon nigral viral vector-mediated alpha-synuclein overexpression. We obtained a strong, progressive and dose-dependent loss of dopaminergic neurons in the substantia nigra, reaching a maximum of 82% after 8 weeks. This effect correlated with a reduction in tyrosine hydroxylase immunoreactivity in the striatum. Moreover, behavioural analysis revealed significant motor impairments from 12 weeks after injection on. In addition, we detected the presence of alpha-synuclein-positive aggregates in the remaining surviving neurons. When comparing wild-type to mutant A53T alpha-synuclein at the same vector dose, both induced a similar degree of cell death. These data were supported by a biochemical analysis that showed a net increase in soluble and insoluble alpha-synuclein expression over time to the same extent for both alpha-synuclein variants.

Conclusions

In conclusion, our in vivo data provide evidence that strong and significant alpha-synuclein-induced neuropathology and progressive dopaminergic neurodegeneration can be achieved in mouse brain by means of rAAV2/7.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号