全文获取类型
收费全文 | 1607篇 |
免费 | 146篇 |
专业分类
1753篇 |
出版年
2023年 | 5篇 |
2022年 | 17篇 |
2021年 | 28篇 |
2020年 | 16篇 |
2019年 | 19篇 |
2018年 | 31篇 |
2017年 | 23篇 |
2016年 | 53篇 |
2015年 | 72篇 |
2014年 | 95篇 |
2013年 | 100篇 |
2012年 | 146篇 |
2011年 | 123篇 |
2010年 | 88篇 |
2009年 | 79篇 |
2008年 | 120篇 |
2007年 | 126篇 |
2006年 | 101篇 |
2005年 | 104篇 |
2004年 | 75篇 |
2003年 | 72篇 |
2002年 | 91篇 |
2001年 | 16篇 |
2000年 | 14篇 |
1999年 | 19篇 |
1998年 | 31篇 |
1997年 | 11篇 |
1996年 | 12篇 |
1995年 | 8篇 |
1994年 | 6篇 |
1993年 | 14篇 |
1992年 | 6篇 |
1991年 | 6篇 |
1990年 | 3篇 |
1989年 | 2篇 |
1988年 | 2篇 |
1987年 | 3篇 |
1986年 | 4篇 |
1982年 | 2篇 |
1980年 | 1篇 |
1977年 | 1篇 |
1976年 | 2篇 |
1975年 | 2篇 |
1971年 | 1篇 |
1969年 | 2篇 |
1968年 | 1篇 |
排序方式: 共有1753条查询结果,搜索用时 15 毫秒
951.
Expression of intermediate filament proteins and neuronal markers in the human fetal gut. 总被引:1,自引:0,他引:1
Ulrich Rauch Markus Klotz Silke Maas-Omlor Elvira Wink Andrea H?nsgen Cornelia Hagl Stefan Holland-Cunz Karl-Herbert Sch?fer 《The journal of histochemistry and cytochemistry》2006,54(1):39-46
The human enteric nervous system (ENS) derives from migrating neural crest cells (NCC) and is structured into different plexuses embedded in the gastrointestinal tract wall. During development of the NCC, a rearrangement of various cytoskeletal intermediate filaments such as nestin, peripherin, or alpha-internexin takes place. Although all are related to developing neurons, nestin is also used to identify neural stem cells. Until now, information about the prenatal development of the human ENS has been very restricted, especially concerning potential stem cells. In this study the expression of nestin, peripherin, and alpha-internexin, but also of neuronal markers such as protein gene product (PGP) 9.5 and tyrosine hydroxylase, were investigated in human fetal and postnatal gut. The tissue samples were rapidly removed and subsequently processed for immunohistochemistry or immunoblotting. Nestin could be detected in all samples investigated with the exception of the 9th and the 12th week of gestation (WOG). Although the neuronal marker PGP9.5 was coexpressed with nestin at the 14th WOG, this could no longer be observed at later time points. Alpha-internexin and peripherin expression also did not appear before the 14th WOG, where they were coexpressed with PGP9.5. This study reveals that the intermediate filament markers investigated are not suitable to detect early neural crest stem cells. 相似文献
952.
Reactive oxygen species (ROS) are potent signal molecules rapidly generated in response to stress. Detection of pathogen-associated molecular patterns induces a transient apoplastic ROS through the function of the NADPH respiratory burst oxidase homologs D (RbohD). However, little is known about the regulation of pathogen-associated molecular pattern-elicited ROS or its role in plant immunity. We investigated ROS production triggered by bacterial flagellin (flg22) in Arabidopsis (Arabidopsis thaliana). The oxidative burst was diminished in ethylene-insensitive mutants. Flagellin Sensitive2 (FLS2) accumulation was reduced in etr1 and ein2, indicating a requirement of ethylene signaling for FLS2 expression. Multiplication of virulent bacteria was enhanced in Arabidopsis lines displaying altered ROS production at early but not late stages of infection, suggesting an impairment of preinvasive immunity. Stomatal closure, a mechanism used to reduce bacterial entry into plant tissues, was abolished in etr1, ein2, and rbohD mutants. These results point to the importance of flg22-triggered ROS at an early stage of the plant immune response.A rapid and transient increase in reactive oxygen species (ROS), termed an “oxidative burst,” is often associated with responses to abiotic and biotic stresses and could trigger changes in stomatal aperture or programmed cell death in defense against pathogens (Kwak et al., 2003; Torres and Dangl, 2005). ROS production can occur extracellularly through activities of plasma membrane-resident NADPH oxidases (Kangasjärvi et al., 2005; Torres and Dangl, 2005). In plants, Rboh proteins, which are homologs of mammalian NADPH oxidase 2, were shown to be the predominant mediators of apoplastic ROS production (Torres et al., 1998; Galletti et al., 2008). Respiratory burst oxidase homologs D and F (RbohD and RbohF) were identified by mutation to be the responsible oxidases in Arabidopsis (Arabidopsis thaliana) defense responses (Torres et al., 2002). While most ROS generated in response to avirulent Pseudomonas syringae bacteria and Hyaloperonospora oomycete pathogens depend on RbohD function, the induced cell death response by these pathogens appears to be mostly regulated by RbohF. Cell death provoked upon infection with the necrotizing fungus Alternaria, however, is under the control of RbohD (Pogány et al., 2009). The contribution of NADPH oxidases to plant immunity was also described in barley (Hordeum vulgare) and tobacco (Nicotiana benthamiana), where resistance to powdery mildew fungi and the oomycete Phytophthora infestans, respectively, was dependent on Rboh functions (Yoshioka et al., 2003; Trujillo et al., 2006).An early layer of active plant defense is mediated by pattern recognition receptors, which sense microbes according to conserved constituents, so-called pathogen-associated molecular patterns (PAMPs). These initiate a plethora of defense responses referred to as PAMP-triggered immunity (Boller and Felix, 2009). The Arabidopsis receptor kinase Flagellin Sensitive2 (FLS2) recognizes and physically interacts with flg22, the elicitor-active epitope of bacterial flagellin (Felix et al., 1999; Gomez-Gomez and Boller, 2000; Chinchilla et al., 2006). FLS2 is plasma membrane localized and expressed throughout the plant (Robatzek et al., 2006). FLS2 requires the receptor kinase BRI1-Associated Kinase1 (BAK1), which forms a heteromeric complex upon flg22 binding (Chinchilla et al., 2007). Subsequently, a rapid and transient flg22-stimulated oxidative burst occurs that is dependent on RbohD (Zhang et al., 2007). In addition, flg22 triggers early responses, such as ethylene biosynthesis, activation of mitogen-activated protein (MAP) kinase cascades, and changes in gene expression (Felix et al., 1999; Asai et al., 2002; Zipfel et al., 2004). Late flg22 responses include the accumulation of salicylic acid (SA), callose deposition, and an arrest of seedling growth (Gomez-Gomez et al., 1999; Mischina and Zeier, 2007). This collectively contributes to plant immunity (Zipfel et al., 2004; Melotto et al., 2006).Little is known about the regulatory components of FLS2-activated early flg22 responses and their relevance in plant resistance to pathogens. Here, we investigated flg22-triggered ROS production in Arabidopsis seedlings and have identified ethylene signaling as a critical component of the oxidative burst in response to flg22, partly through promoting the accumulation of FLS2. We further provide evidence that the flg22-triggered oxidative burst is required for resistance to bacterial infection at the point of pathogen entry through stomata. 相似文献
953.
Structural characterization of Lyn-SH3 domain in complex with a herpesviral protein reveals an extended recognition motif that enhances binding affinity 下载免费PDF全文
Bauer F Schweimer K Meiselbach H Hoffmann S Rösch P Sticht H 《Protein science : a publication of the Protein Society》2005,14(10):2487-2498
The Src homology 3 (SH3) domain of the Src family kinase Lyn binds to the herpesviral tyrosine kinase interacting protein (Tip) more than one order of magnitude stronger than other closely related members of the Src family. In order to identify the molecular basis for high-affinity binding, the structure of free and Tip-bound Lyn-SH3 was determined by NMR spectroscopy. Tip forms additional contacts outside its classical proline-rich recognition motif and, in particular, a strictly conserved leucine (L186) of the C-terminally adjacent sequence stretch packs into a hydrophobic pocket on the Lyn surface. Although the existence of this pocket is no unique property of Lyn-SH3, Lyn is the only Src family kinase that contains an additional aromatic residue (H41) in the n-Src loop as part of this pocket. H41 covers L186 of Tip by forming tight hydrophobic contacts, and model calculations suggest that the increase in binding affinity compared with other SH3 domains can mainly be attributed to these additional interactions. These findings indicate that this pocket can mediate specificity even between otherwise closely related SH3 domains. 相似文献
954.
Lynch NJ Roscher S Hartung T Morath S Matsushita M Maennel DN Kuraya M Fujita T Schwaeble WJ 《Journal of immunology (Baltimore, Md. : 1950)》2004,172(2):1198-1202
The lectin pathway of complement is activated when a carbohydrate recognition complex and associated serine proteases binds to the surface of a pathogen. Three recognition subcomponents have been shown to form active initiation complexes: mannan-binding lectin (MBL), L-ficolin, and H-ficolin. The importance of MBL in antimicrobial host defense is well recognized, but the role of the ficolins remains largely undefined. This report shows that L-ficolin specifically binds to lipoteichoic acid (LTA), a cell wall component found in all Gram-positive bacteria. Immobilized LTA from Staphylococcus aureus binds L-ficolin complexes from sera, and these complexes initiate lectin pathway-dependent C4 turnover. C4 activation correlates with serum L-ficolin concentration, but not with serum MBL levels. L-ficolin binding and corresponding levels of C4 turnover were observed on LTA purified from other clinically important bacteria, including Streptococcus pyogenes and Streptococcus agalactiae. None of the LTA preparations bound MBL, H-ficolin, or the classical pathway recognition molecule, C1q. 相似文献
955.
Silke Litzinger Stefanie Fischer Patrick Polzer Kay Diederichs Wolfram Welte Christoph Mayer 《The Journal of biological chemistry》2010,285(46):35675-35684
Three-dimensional structures of NagZ of Bacillus subtilis, the first structures of a two-domain β-N-acetylglucosaminidase of family 3 of glycosidases, were determined with and without the transition state mimicking inhibitor PUGNAc bound to the active site, at 1.84- and 1.40-Å resolution, respectively. The structures together with kinetic analyses of mutants revealed an Asp-His dyad involved in catalysis: His234 of BsNagZ acts as general acid/base catalyst and is hydrogen bonded by Asp232 for proper function. Replacement of both His234 and Asp232 with glycine reduced the rate of hydrolysis of the fluorogenic substrate 4′-methylumbelliferyl N-acetyl-β-d-glucosaminide 1900- and 4500-fold, respectively, and rendered activity pH-independent in the alkaline range consistent with a role of these residues in acid/base catalysis. N-Acetylglucosaminyl enzyme intermediate accumulated in the H234G mutant and β-azide product was formed in the presence of sodium azide in both mutants. The Asp-His dyad is conserved within β-N-acetylglucosaminidases but otherwise absent in β-glycosidases of family 3, which instead carry a “classical” glutamate acid/base catalyst. The acid/base glutamate of Hordeum vulgare exoglucanase (Exo1) superimposes with His234 of the dyad of BsNagZ and, in contrast to the latter, protrudes from a second domain of the enzyme into the active site. This is the first report of an Asp-His catalytic dyad involved in hydrolysis of glycosides resembling in function the Asp-His-Ser triad of serine proteases. Our findings will facilitate the development of mechanism-based inhibitors that selectively target family 3 β-N-acetylglucosaminidases, which are involved in bacterial cell wall turnover, spore germination, and induction of β-lactamase. 相似文献
956.
Kerstin Jütten Peter Pieperhoff Martin Südmeyer Axel Schleicher Stefano Ferrea Svenja Caspers Karl Zilles Alfons Schnitzler Katrin Amunts Silke Lux 《PloS one》2014,9(10)
Background
Corticobasal Syndrome (CBS) is a rare neurodegenerative syndrome characterized by unilaterally beginning frontoparietal and basal ganglia atrophy. The study aimed to prove the hypothesis that there are differences in hemispheric susceptibility to disease-related changes.Methods
Two groups of CBS patients with symptoms starting either on the left or right body side were investigated. Groups consisted of four patients each and were matched for sex, age and disease duration. Patient groups and a group of eight healthy age-matched controls were analyzed using deformation field morphometry and neuropsychological testing. To further characterize individual disease progression regarding brain atrophy and neuropsychological performance, two female, disease duration-matched patients differing in initially impaired body side were followed over six months.Results
A distinct pattern of neural atrophy and neuropsychological performance was revealed for both CBS: Patients with initial right-sided impairment (r-CBS) revealed atrophy predominantly in frontoparietal areas and showed, except from apraxia, no other cognitive deficits. In contrast, patients with impairment of the left body side (l-CBS) revealed more widespread atrophy, extending from frontoparietal to orbitofrontal and temporal regions; and apraxia, perceptional and memory deficits could be found. A similar pattern of morphological and neuropsychological differences was found for the individual disease progression in l-CBS and r-CBS single cases.Conclusions
For similar durations of disease, volumetric grey matter loss related to CBS pathology appeared earlier and progressed faster in l-CBS than in r-CBS. Cognitive impairment in r-CBS was characterized by apraxia, and additional memory and perceptional deficits for l-CBS. 相似文献957.
Charvet C Wissler M Brauns-Schubert P Wang SJ Tang Y Sigloch FC Mellert H Brandenburg M Lindner SE Breit B Green DR McMahon SB Borner C Gu W Maurer U 《Molecular cell》2011,42(5):584-596
Activation of p53 by DNA damage results in either cell-cycle arrest, allowing DNA repair and cell survival, or induction of apoptosis. As these opposite outcomes are both mediated by p53 stabilization, additional mechanisms to determine this decision must exist. Here, we show that glycogen synthase kinase-3 (GSK-3) is required for the p53-mediated induction of the proapoptotic BH3 only-protein PUMA, an essential mediator of p53-induced apoptosis. Inhibition of GSK-3 protected from cell death induced by DNA damage and promoted increased long-term cell survival. We demonstrate that GSK-3 phosphorylates serine 86 of the p53-acetyltransferase Tip60. A Tip60(S86A) mutant was less active to induce p53 K120 acetylation, histone 4 acetylation, and expression of PUMA. Our data suggest that GSK-3 mediated Tip60S86 phosphorylation provides a link between PI3K signaling and the choice for or against apoptosis induction by p53. 相似文献
958.
959.
Christine David Johannes Koch Silke Oeljeklaus Alexandra Laernsack Sophie Melchior Sebastian Wiese Andreas Schummer Ralf Erdmann Bettina Warscheid Cécile Brocard 《Molecular & cellular proteomics : MCP》2013,12(9):2408-2425
Peroxisome biogenesis initiates at the endoplasmic reticulum (ER) and maturation allows for the formation of metabolically active organelles. Yet, peroxisomes can also multiply by growth and division. Several proteins, called peroxins, are known to participate in these processes but little is known about their organization to orchestrate peroxisome proliferation. Here, we demonstrate that regulation of peroxisome proliferation relies on the integrity of the tubular ER network. Using a dual track SILAC-based quantitative interaction proteomics approach, we established a comprehensive network of stable as well as transient interactions of the peroxin Pex30p, an integral membrane protein. Through association with merely ER resident proteins, in particular with proteins containing a reticulon homology domain, and with other peroxins, Pex30p designates peroxisome contact sites at ER subdomains. We show that Pex30p traffics through the ER and segregates in punctae to which peroxisomes specifically append, and we ascertain its transient interaction with all subunits of the COPI coatomer complex suggesting the involvement of a vesicle-mediated transport. We establish that the membrane protein Pex30p facilitates the connection of peroxisomes to the ER. Taken together, our data indicate that Pex30p-containing protein complexes act as focal points from which peroxisomes can form and that the tubular ER architecture organized by the reticulon homology proteins Rtn1p, Rtn2p and Yop1p controls this process.All nucleated cells contain essential round-shaped organelles called peroxisomes, whose function is mainly associated with lipid metabolism (1). Depending on the cellular requirements, the size, number, and protein content of these single membrane-bound organelles can vary widely. Although peroxisomes are dispensable for unicellular species such as yeasts, they are essential for the development of multicellular organisms (2, 3). In human, mutations in PEX genes lead to defects in peroxisome function or formation and are associated with the development of lethal pathologies (4). These PEX genes code for proteins, called peroxins, which are involved in peroxisome assembly and maintenance (5).Two major routes seem to lead to peroxisome formation, namely, de novo biogenesis and growth/division of pre-existing peroxisomes. The division pathway operates with proteins of the Pex11 family and requires fission factors shared with mitochondria (6). Studies in yeast and mammalian cells revealed that through the action of the protein Pex3p peroxisome precursors can also originate from the endoplasmic reticulum (ER)1 and, via import of membrane and matrix proteins, mature into fully functional organelles (7, 8). Furthermore, several peroxisomal membrane proteins were shown to migrate to peroxisomes via the ER (7, 9, 10). The molecular mechanism underlying the biogenic pathway of peroxisome formation has not been clarified so far. Recent data based on cell-free vesicle-budding reactions, however, demonstrated that several peroxisomal proteins traffic from the ER to peroxisomes in a COPII vesicle-independent manner (11). These observations point to the existence of vesicular events to mediate the transport of peroxisomal membrane proteins from the ER. In fact, analysis of secretory mutant yeast cells already suggest that part of the ER-associated secretory machinery is involved in peroxisome biogenesis (12).The de novo biogenesis of peroxisomes and the growth/division pathways are usually seen as independent routes; however, these events may be coordinated and, thus, intimately linked. Indeed, peroxisomes need to acquire membrane components to proliferate and it has been proposed that their binding to the cell cortex or to the cytoskeleton allows their partitioning and segregation during cell division (13–15).Among the proteins required for assembly of peroxisomes, the membrane proteins Pex23p and Pex24p play essential roles in the yeast Yarrowia lipolytica (16, 17). Homologs of these two proteins in Saccharomyces cerevisiae are Pex30p, Pex31p, and Pex32p, all containing at least one transmembrane domain and a dysferlin domain as common structural motifs, as well as Pex28p and Pex29p. In S. cerevisiae, these proteins seem to negatively control peroxisomal size and number (18, 19). Interestingly, Pex30p seems to exhibit species-specific differences in the regulation of peroxisome proliferation. While the lack of Pex30p in S. cerevisiae leads to an increase in the number of normal-sized peroxisomes (18), in Pichia pastoris its absence correlates with the appearance of fewer and clustered peroxisomes (20). Although peroxisomes are highly versatile organelles, under given conditions their total number per cell remains fairly constant owing to the delicate balance of proliferation, inheritance and degradation (21, 22). The question is: what are the molecular mechanisms responsible for the spatiotemporal organization of these events?Here, we present data obtained from a dual approach based on quantitative interaction proteomics using stable isotope labeling with amino acids in cell culture (SILAC) (23, 24) and live-cell imaging, revealing for the first time the dynamic interaction network around Pex30p and its function in the organization of ER-to-peroxisome membrane associations. We report the existence of a macromolecular membrane protein complex that acts as a hub for the regulation of peroxisome proliferation and movement. Our data suggest a direct role for the tubular cortical ER and the reticulon homology proteins Rtn1p, Rtn2p, and Yop1p in the regulation of peroxisome biogenesis. Furthermore, as an initially cortical-ER localized protein that interacts with reticulon homology proteins, Pex30p is shown in this work to establish contacts between ER tubules and peroxisomes and to specifically traffic through the ER. In summary, our data reveal a central role for Pex30p in the formation of ER-to-peroxisomes associations that appear to be involved in the coordination of peroxisome biogenesis and maintenance. 相似文献
960.