首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1607篇
  免费   146篇
  1753篇
  2023年   5篇
  2022年   17篇
  2021年   28篇
  2020年   16篇
  2019年   19篇
  2018年   31篇
  2017年   23篇
  2016年   53篇
  2015年   72篇
  2014年   95篇
  2013年   100篇
  2012年   146篇
  2011年   123篇
  2010年   88篇
  2009年   79篇
  2008年   120篇
  2007年   126篇
  2006年   101篇
  2005年   104篇
  2004年   75篇
  2003年   72篇
  2002年   91篇
  2001年   16篇
  2000年   14篇
  1999年   19篇
  1998年   31篇
  1997年   11篇
  1996年   12篇
  1995年   8篇
  1994年   6篇
  1993年   14篇
  1992年   6篇
  1991年   6篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   4篇
  1982年   2篇
  1980年   1篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1971年   1篇
  1969年   2篇
  1968年   1篇
排序方式: 共有1753条查询结果,搜索用时 15 毫秒
131.
Regulatory NK cell receptors can contribute to antigen-specific adaptive immune responses by modulating T cell receptor (TCR)-induced T cell activation. We investigated the potential of the NK cell receptor 2B4 (CD244) to enhance tumor antigen-induced activation of human T cells. 2B4 is a member of the CD2 receptor subfamily with both activating and inhibitory functions in NK cells. In T cells, its expression is positively associated with the acquisition of a cytolytic effector memory phenotype. Recombinant chimeric receptors that link extracellular single-chain Fv fragments specific for the tumor-associated surface antigens CD19 and GD2 to the signaling domains of human 2B4 and/or TCRζ were expressed in non-specifically activated peripheral blood T cells by retroviral gene transfer. While 2B4 signaling alone failed to induce T cell effector functions or proliferation, it significantly augmented the antigen-specific activation responses induced by TCRζ. 2B4 costimulation did not affect the predominant effector memory phenotype of expanding T cells, nor did it increase the proportion of T cells with regulatory phenotype (CD4+CD25hiFoxP3+). These data support a costimulatory role for 2B4 in human T cell subpopulations. As an amplifier of TCR-mediated signals, 2B4 may provide a powerful new tool for immunotherapy of cancer, promoting sustained activation and proliferation of gene-modified antitumor T cells.  相似文献   
132.
Aryl-hydroxylating dioxygenases are of interest for the degradation of persistant aromatic pollutants, such as polychlorobiphenyls (PCBs), or as catalysts for the functionalization of aromatic scaffolds. In order to achieve dioxygenation of technical mixtures of PCBs, enzymes with broadened or altered substrate ranges are essential. To alter the substrate specificity of the biphenyl dioxygenase (BphA) of Burkholderia xenovorans LB400, we applied a directed evolution approach that used structure-function relationship data to target random mutageneses to specific segments of the enzyme. The limitation of random amino acid (AA) substitutions to regions that are critical for substrate binding and the exclusion of AA exchanges from positions that are essential for catalytic activity yielded enzyme variants of interest at comparatively high frequencies. After only a single mutagenic cycle, 10 beneficial variants were detected in a library of fewer than 1,000 active enzymes. Compared to the parental BphA, they showed between 5- and 200-fold increased turnover of chlorinated biphenyls, with substituent patterns that rendered them largely recalcitrant to attack by BphA-LB400. Determination of their sequences identified AAs that prevent the acceptance of specific PCBs by the wild-type enzyme, such as Pro334 and Phe384. The results suggest prime targets for subsequent cycles of BphA modification. Correlations with a three-dimensional model of the enzyme indicated that most of the exchanges with major influence on substrate turnover do not involve pocket-lining residues and had not been predictable through structural modeling.  相似文献   
133.
The structural changes of ferrous Cyt-c that are induced by binding to SDS micelles, phospholipid vesicles, DeTAB, and GuHCl as well as by high temperatures and changes in the pH have been studied by RR and UV-Vis absorption spectroscopies. Four species have been identified in which the native methionine-80 ligand is removed from the heme iron. This coordination site is either occupied by a histidine (His-33 or His-26) to form a 6cLS configuration, which is the prevailing species in GuHCl at pH 7.0 and ambient temperature, or remains vacant to yield a 5cHS configuration. The three identified 5cHS species differ with respect to the hydrogen-bond interactions of the proximal histidine ligand (His-18) and include a nonhydrogen-bonded, a hydrogen-bonded, and a deprotonated imidazole ring. These structural motifs have been found irrespective of the unfolding conditions used. An unambiguous spectroscopic distinction of these 5cHS species is possible on the basis of the Fe-N(imidazole) stretching vibrations, the RR bands in the region between 1300 and 1650 cm(-1), and the electronic transitions in the Soret- and Q-band regions. In acid and neutral solutions, the species with a hydrogen-bonded and a nonhydrogen-bonded His-18 prevail, whereas in alkaline solutions a configuration with a deprotonated His-18 ligand is also observed. Upon lowering the pH or increasing the temperature in GuHCl solutions, the structure on the proximal side of the heme is perturbed, resulting in a loss of the hydrogen-bond interactions of the His-18 ligand. Conversely, the hydrogen-bonded His-18 of ferrous Cyt-c is stabilized by electrostatic interactions which increase in strength from phospholipid vesicles to SDS micelles. The results here suggest that unfolding of Cyt-c is initiated by the rupture of the Fe-Met-80 bond and structural reorganizations on the distal side of the heme pocket, whereas the proximal part is only affected in a later stage of the denaturation process.  相似文献   
134.
135.
Yersinia pestis produces and secretes a toxin named pesticin that kills related bacteria of the same niche. Uptake of the bacteriocin is required for activity in the periplasm leading to hydrolysis of peptidoglycan. To understand the uptake mechanism and to investigate the function of pesticin, we combined crystal structures of the wild type enzyme, active site mutants, and a chimera protein with in vivo and in vitro activity assays. Wild type pesticin comprises an elongated N-terminal translocation domain, the intermediate receptor binding domain, and a C-terminal activity domain with structural analogy to lysozyme homologs. The full-length protein is toxic to bacteria when taken up to the target site via the outer or the inner membrane. Uptake studies of deletion mutants in the translocation domain demonstrate their critical size for import. To further test the plasticity of pesticin during uptake into bacterial cells, the activity domain was replaced by T4 lysozyme. Surprisingly, this replacement resulted in an active chimera protein that is not inhibited by the immunity protein Pim. Activity of pesticin and the chimera protein was blocked through introduction of disulfide bonds, which suggests unfolding as the prerequisite to gain access to the periplasm. Pesticin, a muramidase, was characterized by active site mutations demonstrating a similar but not identical residue pattern in comparison with T4 lysozyme.  相似文献   
136.
An effective immunity to Toxoplasma gondii in humans is dependent on the cellular immune response. Toxoplasma can infect and replicate in almost all nucleated cells, and the most important cytokine regulating the growth in humans is IFN-gamma; however, the role of TNF-alpha has to date been largely described to be synergistic. We show that, compared with mature human dendritic cells (mDC), immature human DC (iDC) demonstrate a reduced parasite proliferation when infected with Toxoplasma. This toxoplasmostasis was only present in iDC after 11 days of culture and was not present in DC that had been matured ex vivo using a cytokine mixture (mDC). Spontaneous toxoplasmostatic activity has previously only been described in fresh human monocytes, and the mechanism involved is as yet unclear. We show that, in comparison with an absence of expression in mDC, TNF-R2 is expressed in both iDC and monocytes infected with Toxoplasma, and furthermore, that blocking the TNF-R2 with Abs abrogates the toxoplasmostasis in the iDC. These findings demonstrate a functional role for TNF-R2 in the newly described spontaneous toxoplasmostasis of iDC.  相似文献   
137.
138.
139.
The cell surface binding, endocytosis, and lysosomal routing of procathepsin D (procath-D) in cancer cells are mostly independent of the mannose-6-phosphate (M6P) receptors. In an attempt to define the receptor involved, we intracellularly cross-linked procath-D with a 68-kDa protein that we identified with specific antibodies as prosaposin in human breast and ovarian cancer cell lines. In cancer cells, this protein-protein interaction was resistant to ammonium chloride or M6P treatment, indicating that it was independent of the M6P receptors. A similar interaction also occurred in the breast cancer cell culture medium between the secreted prosaposin and procath-D. Since these two precursors can be endocytosed, we then determined whether they were interacting with the same cell surface receptor. In fibroblasts, we confirmed that the endocytosis of these two proteins was different since it was generally mediated by the M6P receptors for procath-D and mostly by LRP (LDL receptor-related protein) for prosaposin. In breast cancer cells, prosaposin endocytosis was not detected, in contrast to procath-D endocytosis, suggesting that the majority of procath-D is not internalized as a complex with prosaposin. Moreover, RAP (receptor-associated protein), a ligand inhibiting LRP-mediated endocytosis, prevented internalization of prosaposin in 49-F rat fibroblasts, but did not affect procath-D M6P-independent internalization in MDA-MB231 cells. We conclude that in breast cancer cells, even though procath-D interacts intracellularly and extracellarly with prosaposin, it is endocytosed independent of prosaposin by a receptor different from the M6P receptors and the LRP.  相似文献   
140.
The intimate relationship between mediators of the ubiquitin (Ub)-signaling system and human diseases has sparked profound interest in how Ub influences cell death and survival. While the consequence of Ub attachment is intensely studied, little is known with regards to the effects of other Ub-like proteins (UBLs), and deconjugating enzymes that remove the Ub or UBL adduct. Systematic in vivo RNAi analysis identified three NEDD8-specific isopeptidases that, when knocked down, suppress apoptosis. Consistent with the notion that attachment of NEDD8 prevents cell death, genetic ablation of deneddylase 1 (DEN1) suppresses apoptosis. Unexpectedly, we find that Drosophila and human inhibitor of apoptosis (IAP) proteins can function as E3 ligases of the NEDD8 conjugation pathway, targeting effector caspases for neddylation and inactivation. Finally, we demonstrate that DEN1 reverses this effect by removing the NEDD8 modification. Altogether, our findings indicate that IAPs not only modulate cellular processes via ubiquitylation but also through attachment of NEDD8, thereby extending the complexity of IAP-mediated signaling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号