首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1582篇
  免费   146篇
  1728篇
  2023年   5篇
  2022年   17篇
  2021年   27篇
  2020年   16篇
  2019年   19篇
  2018年   31篇
  2017年   22篇
  2016年   53篇
  2015年   72篇
  2014年   95篇
  2013年   98篇
  2012年   145篇
  2011年   120篇
  2010年   88篇
  2009年   78篇
  2008年   120篇
  2007年   123篇
  2006年   101篇
  2005年   104篇
  2004年   75篇
  2003年   72篇
  2002年   89篇
  2001年   15篇
  2000年   14篇
  1999年   19篇
  1998年   31篇
  1997年   11篇
  1996年   12篇
  1995年   8篇
  1994年   6篇
  1993年   14篇
  1992年   6篇
  1991年   5篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1982年   2篇
  1976年   2篇
  1975年   1篇
  1971年   1篇
排序方式: 共有1728条查询结果,搜索用时 15 毫秒
961.
The molybdenum cofactor (Moco) exists in different variants in the cell and can be directly inserted into molybdoenzymes utilizing the molybdopterin (MPT) form of Moco. In bacteria such as Rhodobacter capsulatus and Escherichia coli, MPT is further modified by attachment of a GMP nucleotide, forming MPT guanine dinucleotide (MGD). In this work, we analyzed the distribution and targeting of different forms of Moco to their respective user enzymes by proteins that bind Moco and are involved in its further modification. The R. capsulatus proteins MogA, MoeA, MobA, and XdhC were purified, and their specific interactions were analyzed. Interactions between the protein pairs MogA-MoeA, MoeA-XdhC, MoeA-MobA, and XdhC-MobA were identified by surface plasmon resonance measurements. In addition, the transfer of Moco produced by the MogA-MoeA complex to XdhC was investigated. A direct competition of MobA and XdhC for Moco binding was determined. In vitro analyses showed that XdhC bound to MobA, prevented the binding of Moco to MobA, and thereby inhibited MGD biosynthesis. The data were confirmed by in vivo studies in R. capsulatus cells showing that overproduction of XdhC resulted in a 50% decrease in the activity of bis-MGD-containing Me(2)SO reductase. We propose that, in bacteria, the distribution of Moco in the cell and targeting to the respective user enzymes are accomplished by specific proteins involved in Moco binding and modification.  相似文献   
962.
Reticulons (RTNs) are a large family of transmembrane proteins present throughout the eukaryotic domain in virtually every cell type. Despite their wide distribution, their function is still mostly unknown. RTN4, also termed Nogo, comes in three isoforms, Nogo-A, -B, and -C. While Nogo-A has been described as potent inhibitor of nerve growth, Nogo-B has been implicated in vascular remodeling and regulation of apoptosis. We show here that Nogo-B gets cleaved by caspase-7, but not caspase-3, during apoptosis at a caspase nonconsensus site. By a combination of MS and site-directed mutagenesis we demonstrate that proteolytic processing of Nogo-B is regulated by phosphorylation of Ser(16) within the cleavage site. We present cyclin-dependent kinase (Cdk)1 and Cdk2 as kinases that phosphorylate Nogo-B at Ser(16) in vitro. In vivo, cleavage of Nogo-B is markedly increased in Schwann cells in a lesion model of the rat sciatic nerve. Taken together, we identified an RTN protein as one out of a selected number of caspase targets during apoptosis and as a novel substrate for Cdk1 and 2. Furthermore, our data support a functionality of caspase-7 that is distinct from closely related caspase-3.  相似文献   
963.
964.
965.
966.
967.
Effects of dispersal and the presence of predators on diversity, assembly and functioning of bacterial communities are well studied in isolation. In reality, however, dispersal and trophic interactions act simultaneously and can therefore have combined effects, which are poorly investigated. We performed an experiment with aquatic metacommunities consisting of three environmentally different patches and manipulated dispersal rates among them as well as the presence or absence of the keystone species Daphnia magna. Daphnia magna reduced both local and regional diversity, whereas dispersal increased local diversity but decreased beta‐diversity having no net effect on regional diversity. Dispersal modified the assembly mechanisms of bacterial communities by increasing the degree of determinism. Additionally, the combination of the D. magna and dispersal increased the importance of deterministic processes, presumably because predator‐tolerant taxa were spread in the metacommunity via dispersal. Moreover, the presence of D. magna affected community composition, increased community respiration rates but did not affect bacterial production or abundance, whereas dispersal slightly increased bacterial production. In conclusion, our study suggests that predation by a keystone species such as D. magna and dispersal additively influence bacterial diversity, assembly processes and ecosystem functioning.  相似文献   
968.
In humans, complex I of the respiratory chain is composed of seven mitochondrial DNA (mtDNA)-encoded and 38 nuclear-encoded subunits that assemble together in a process that is poorly defined. To date, only two complex I assembly factors have been identified and how each functions is not clear. Here, we show that the human complex I assembly factor CIA30 (complex I intermediate associated protein) associates with newly translated mtDNA-encoded complex I subunits at early stages in their assembly before dissociating at a later stage. Using antibodies we identified a CIA30-deficient patient who presented with cardioencephalomyopathy and reduced levels and activity of complex I. Genetic analysis revealed the patient had mutations in both alleles of the NDUFAF1 gene that encodes CIA30. Complex I assembly in patient cells was defective at early stages with subunits being degraded. Complementing the deficiency in patient fibroblasts with normal CIA30 using a novel lentiviral system restored steady-state complex I levels. Our results indicate that CIA30 is a crucial component in the early assembly of complex I and mutations in its gene can cause mitochondrial disease.  相似文献   
969.
We report the analysis of the fluorescence intensity fluctuations of single proteins of a GFP mutant, GFPmut2, embedded in a polyelectrolyte nanocapsule adsorbed on thin conductive layers. Our results, based on single molecule fluorescence spectroscopy, indicate that the fluorescence blinking dynamics of GFP is strongly dependent on the bulk conductivity of the metal layer substrate, on the distance from the conductive surfaces and on the amplitude of the voltage applied to the poly-electrolyte layers. These findings suggest that fluorescence blinking itself might be employed as a reporter signal in nano-bio-technology applications.  相似文献   
970.
Seasonal activities of the digestive enzyme trypsin were measured between August 1998 and May 1999 to study different nutritional strategies of the two copepods Pseudocalanus minutus and Oithona similis in the Arctic Kongsfjorden (Svalbard) using a highly sensitive fluorescence technique. Stage-, depth- and season-specific characteristics of digestive activity were reflected in the trypsin activity. P. minutus females and stage V copepodids (C) had highest trypsin activities in spring during reproduction (197.5 and 145.7 nmol min−1 ng C−1, respectively). In summer stages CIII–V and in autumn stages CIV and V had high activities (80–116 nmol min−1 ng C−1) in the shallow layer (< 100 m) presumably as a consequence of prolonged feeding before descending to overwintering depth. Trypsin activities at depth (> 100 m) in summer and autumn were low in stages CIII and CIV (29–60 nmol min−1 ng C−1) and in winter in all stages in both layers (20–43 nmol min−1 ng C−1). Based on low trypsin activity, males most likely did not feed. In O. similis, the spring phytoplankton bloom did not significantly affect trypsin activity as compared to the other seasons. O. similis CV and females had high trypsin activities in summer in the deep stratum (304.5 nmol min−1 ng C−1), which was concomitant with reproductive processes and energy storage for overwintering. In autumn, stage CV and female O. similis had significantly higher activities than stage CIV (130–152 versus 78 nmol min−1 ng C−1), which is in accordance with still ongoing developmental and reproductive processes in CVs and females. Comparisons of both species revealed different depth-related responses emphasizing different nutritional preferences: the mainly herbivorous P. minutus is more actively feeding in the shallow layer, where primary production occurs, whereas the omnivorous O. similis is not as much restricted to a certain depth layer, when searching for food. P. minutus had lower levels of trypsin activity during all seasons. In contrast to P. minutus, higher enzyme activities in males of O. similis suggest that they continue to feed and survive after fertilization of females.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号