全文获取类型
收费全文 | 1601篇 |
免费 | 147篇 |
专业分类
1748篇 |
出版年
2023年 | 5篇 |
2022年 | 17篇 |
2021年 | 27篇 |
2020年 | 16篇 |
2019年 | 19篇 |
2018年 | 31篇 |
2017年 | 22篇 |
2016年 | 53篇 |
2015年 | 72篇 |
2014年 | 95篇 |
2013年 | 98篇 |
2012年 | 145篇 |
2011年 | 120篇 |
2010年 | 88篇 |
2009年 | 78篇 |
2008年 | 120篇 |
2007年 | 124篇 |
2006年 | 101篇 |
2005年 | 104篇 |
2004年 | 75篇 |
2003年 | 72篇 |
2002年 | 89篇 |
2001年 | 16篇 |
2000年 | 14篇 |
1999年 | 20篇 |
1998年 | 31篇 |
1997年 | 12篇 |
1996年 | 13篇 |
1995年 | 8篇 |
1994年 | 6篇 |
1993年 | 14篇 |
1992年 | 6篇 |
1991年 | 8篇 |
1990年 | 3篇 |
1989年 | 2篇 |
1988年 | 4篇 |
1987年 | 3篇 |
1986年 | 4篇 |
1982年 | 3篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1977年 | 1篇 |
1976年 | 2篇 |
1975年 | 1篇 |
1973年 | 1篇 |
1972年 | 1篇 |
1971年 | 1篇 |
1967年 | 1篇 |
排序方式: 共有1748条查询结果,搜索用时 0 毫秒
101.
Greg A. Knock Vladimir A. Snetkov Yasin Shaifta Michelle Connolly Svetlana Drndarski Anthony Noah Ghazaleh E. Pourmahram Silke Becker Philip I. Aaronson Jeremy P.T. Ward 《Free radical biology & medicine》2009,46(5):633-642
Reactive oxygen species play a key role in vascular disease, pulmonary hypertension, and hypoxic pulmonary vasoconstriction. We investigated contractile responses, intracellular Ca2+ ([Ca2+]i), Rho-kinase translocation, and phosphorylation of the regulatory subunit of myosin phosphatase (MYPT-1) and of myosin light chain (MLC20) in response to LY83583, a generator of superoxide anion, in small intrapulmonary arteries (IPA) of rat. LY83583 caused concentration-dependent constrictions in IPA and greatly enhanced submaximal PGF2α-mediated preconstriction. In small femoral or mesenteric arteries of rat, LY83583 alone was without effect, but it relaxed a PGF2α-mediated preconstriction. Constrictions in IPA were inhibited by superoxide dismutase and tempol, but not catalase, and were endothelium and guanylate cyclase independent. Constrictions were also inhibited by the Rho-kinase inhibitor Y27632 and the Src-family kinase inhibitor SU6656. LY83583 did not raise [Ca2+]i, but caused a Y27632-sensitive constriction in α-toxin-permeabilized IPA. LY83583 triggered translocation of Rho-kinase from the nucleus to the cytosol in pulmonary artery smooth muscle cells and enhanced phosphorylation of MYPT-1 at Thr-855 and of MLC20 at Ser-19 in IPA. This enhancement was inhibited by superoxide dismutase and abolished by Y27632. Hydrogen peroxide did not activate Rho-kinase. We conclude that in rat small pulmonary artery, superoxide triggers Rho-kinase-mediated Ca2+ sensitization and vasoconstriction independent of hydrogen peroxide. 相似文献
102.
Claire A Merrifield Marie C Lewis Bernard Berger Olivier Cloarec Silke S Heinzmann Florence Charton Lutz Krause Nadine S Levin Swantje Duncker Annick Mercenier Elaine Holmes Mick Bailey Jeremy K Nicholson 《The ISME journal》2016,10(1):145-157
The postnatal environment, including factors such as weaning and acquisition of the gut microbiota, has been causally linked to the development of later immunological diseases such as allergy and autoimmunity, and has also been associated with a predisposition to metabolic disorders. We show that the very early-life environment influences the development of both the gut microbiota and host metabolic phenotype in a porcine model of human infants. Farm piglets were nursed by their mothers for 1 day, before removal to highly controlled, individual isolators where they received formula milk until weaning at 21 days. The experiment was repeated, to create two batches, which differed only in minor environmental fluctuations during the first day. At day 1 after birth, metabolic profiling of serum by 1H nuclear magnetic resonance spectroscopy demonstrated significant, systemic, inter-batch variation which persisted until weaning. However, the urinary metabolic profiles demonstrated that significant inter-batch effects on 3-hydroxyisovalerate, trimethylamine-N-oxide and mannitol persisted beyond weaning to at least 35 days. Batch effects were linked to significant differences in the composition of colonic microbiota at 35 days, determined by 16 S pyrosequencing. Different weaning diets modulated both the microbiota and metabolic phenotype independently of the persistent batch effects. We demonstrate that the environment during the first day of life influences development of the microbiota and metabolic phenotype and thus should be taken into account when interrogating experimental outcomes. In addition, we suggest that intervention at this early time could provide ‘metabolic rescue'' for at-risk infants who have undergone aberrant patterns of initial intestinal colonisation. 相似文献
103.
Purification of polyethylenimine polyplexes highlights the role of free polycations in gene transfer
Boeckle S von Gersdorff K van der Piepen S Culmsee C Wagner E Ogris M 《The journal of gene medicine》2004,6(10):1102-1111
BACKGROUND: Nonviral vectors based on polyethylenimine (PEI) usually contain an excess of PEI that is not complexed to DNA. Since unbound PEI contributes to cellular and systemic toxicity, purification of polyplexes from unbound PEI is desirable. METHODS: Size exclusion chromatography (SEC) was used to purify PEI polyplexes of free PEI. Transfection properties of purified polyplexes and the effect of free PEI on gene delivery were studied in vitro and in vivo after systemic application into mice. RESULTS: SEC did not change the size and zeta-potential of polyplexes. Independent of the amount of PEI used for complex formation, purified PEI polyplexes had the same final PEI nitrogen/DNA phosphate ratio of 2.5. Notably, purified PEI polyplexes demonstrated low cellular and systemic toxicity. High transfection efficiency was achieved with purified polyplexes at high DNA concentrations (8-15 microg/ml). At low DNA concentrations (2-4 microg/ml) gene transfer with purified particles was less efficient than with polyplexes containing free PEI both in vitro and in vivo. Mechanistic studies showed that free PEI partly blocked cellular association of DNA complexes but was essential for the following intracellular gene delivery. Adding free PEI to cells treated with purified particles with a delay of up to 4 h resulted in significantly enhanced transfection efficiency compared with non-purified particles or purified particles without free PEI. CONCLUSIONS: This study presents an efficient method to remove free PEI from PEI polyplexes by SEC. Our results from transfection experiments demonstrate that free PEI substantially contributes to efficient gene expression but also mediates toxic effects in a dose-dependent manner. Purified polyplexes without free PEI have to be applied at increased concentrations to achieve high transfection levels, but exhibit a greatly improved toxicity profile. 相似文献
104.
Metzger S Bauer P Tomiuk J Laccone F Didonato S Gellera C Mariotti C Lange HW Weirich-Schwaiger H Wenning GK Seppi K Melegh B Havasi V Balikó L Wieczorek S Zaremba J Hoffman-Zacharska D Sulek A Basak AN Soydan E Zidovska J Kebrdlova V Pandolfo M Ribaï P Kadasi L Kvasnicova M Weber BH Kreuz F Dose M Stuhrmann M Riess O 《Human genetics》2006,120(2):285-292
The expansion of a polymorphic CAG repeat in the HD gene encoding huntingtin has been identified as the major cause of Huntington’s disease (HD) and determines 42–73% of the variance in the age-at-onset of the disease. Polymorphisms in huntingtin interacting or associated genes are thought to modify the course of the disease. To identify genetic modifiers influencing the age at disease onset, we searched for polymorphic markers in the GRIK2, TBP, BDNF, HIP1 and ZDHHC17 genes and analysed seven of them by association studies in 980 independent European HD patients. Screening for unknown sequence variations we found besides several silent variations three polymorphisms in the ZDHHC17 gene. These and polymorphisms in the GRIK2, TBP and BDNF genes were analysed with respect to their association with the HD age-at-onset. Although some of the factors have been defined as genetic modifier factors in previous studies, none of the genes encoding GRIK2, TBP, BDNF and ZDHHC17 could be identified as a genetic modifier for HD.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at . 相似文献
105.
Marusela?Oliveras-Salvá Anke?Van der Perren Nicolas?Casadei Stijn?Stroobants Silke?Nuber Rudi?D’Hooge Chris?Van den Haute Veerle?BaekelandtEmail author 《Molecular neurodegeneration》2013,8(1):44
Background
Alpha-synuclein is a key protein implicated in the pathogenesis of Parkinson's disease (PD). It is the main component of the Lewy bodies, a cardinal neuropathological feature in the disease. In addition, whole locus multiplications and point mutations in the gene coding for alpha-synuclein lead to autosomal dominant monogenic PD. Over the past decade, research on PD has impelled the development of new animal models based on alpha-synuclein. In this context, transgenic mouse lines have failed to reproduce several hallmarks of PD, especially the strong and progressive dopaminergic neurodegeneration over time that occurs in the patients. In contrast, viral vector-based models in rats and non-human primates display prominent, although highly variable, nigral dopaminergic neuron loss. However, the few studies available on viral vector-mediated overexpression of alpha-synuclein in mice report a weak neurodegenerative process and no clear Lewy body-like pathology. To address this issue, we performed a comprehensive comparative study of alpha-synuclein overexpression by means of recombinant adeno-associated viral vectors serotype 2/7 (rAAV2/7) at different doses in adult mouse substantia nigra.Results
We noted a significant and dose-dependent alpha-synucleinopathy over time upon nigral viral vector-mediated alpha-synuclein overexpression. We obtained a strong, progressive and dose-dependent loss of dopaminergic neurons in the substantia nigra, reaching a maximum of 82% after 8 weeks. This effect correlated with a reduction in tyrosine hydroxylase immunoreactivity in the striatum. Moreover, behavioural analysis revealed significant motor impairments from 12 weeks after injection on. In addition, we detected the presence of alpha-synuclein-positive aggregates in the remaining surviving neurons. When comparing wild-type to mutant A53T alpha-synuclein at the same vector dose, both induced a similar degree of cell death. These data were supported by a biochemical analysis that showed a net increase in soluble and insoluble alpha-synuclein expression over time to the same extent for both alpha-synuclein variants.Conclusions
In conclusion, our in vivo data provide evidence that strong and significant alpha-synuclein-induced neuropathology and progressive dopaminergic neurodegeneration can be achieved in mouse brain by means of rAAV2/7.106.
107.
Thomas Spallek Martina Beck Sara Ben Khaled Susanne Salomon Gildas Bourdais Swen Schellmann Silke Robatzek 《PLoS genetics》2013,9(12)
The plant immune receptor FLAGELLIN SENSING 2 (FLS2) is present at the plasma membrane and is internalized following activation of its ligand flagellin (flg22). We show that ENDOSOMAL SORTING COMPLEX REQUIRED FOR TRANSPORT (ESCRT)-I subunits play roles in FLS2 endocytosis in Arabidopsis. VPS37-1 co-localizes with FLS2 at endosomes and immunoprecipitates with the receptor upon flg22 elicitation. Vps37-1 mutants are reduced in flg22-induced FLS2 endosomes but not in endosomes labeled by Rab5 GTPases suggesting a defect in FLS2 trafficking rather than formation of endosomes. FLS2 localizes to the lumen of multivesicular bodies, but this is altered in vps37-1 mutants indicating compromised endosomal sorting of FLS2 by ESCRT-I loss-of-function. VPS37-1 and VPS28-2 are critical for immunity against bacterial infection through a role in stomatal closure. Our findings identify that VPS37-1, and likewise VPS28-2, regulate late FLS2 endosomal sorting and reveals that ESCRT-I is critical for flg22-activated stomatal defenses involved in plant immunity. 相似文献
108.
Fusidic acid is a potent antibiotic against severe Gram-positive infections that interferes with the function of elongation factor G (EF-G), thereby leading to the inhibition of bacterial protein synthesis. In this study, we demonstrate that fusidic acid resistance in Staphylococcus aureus results from point mutations within the chromosomal fusA gene encoding EF-G. Sequence analysis of fusA revealed mutational changes that cause amino acid substitutions in 10 fusidic acid-resistant clinical S. aureus strains as well as in 10 fusidic acid-resistant S. aureus mutants isolated under fusidic acid selective pressure in vitro. Fourteen different amino acid exchanges were identified that were restricted to 13 amino acid residues within EF-G. To confirm the importance of observed amino acid exchanges in EF-G for the generation of fusidic acid resistance in S. aureus, three mutant fusA alleles encoding EF-G derivatives with the exchanges P406L, H457Y and L461K were constructed by site-directed mutagenesis. In each case, introduction of the mutant fusA alleles on plasmids into the fusidic acid-susceptible S. aureus strain RN4220 caused a fusidic acid-resistant phenotype. The elevated minimal inhibitory concentrations of fusidic acid determined for the recombinant bacteria were analogous to those observed for the fusidic acid-resistant clinical S. aureus isolates and the in vitro mutants containing the same chromosomal mutations. Thus, the data presented provide evidence for the crucial importance of individual amino acid exchanges within EF-G for the generation of fusidic acid resistance in S. aureus. 相似文献
109.
A computational approach for inferring the cell wall properties that govern guard cell dynamics 下载免费PDF全文
Hugh C. Woolfenden Gildas Bourdais Michaela Kopischke Eva Miedes Antonio Molina Silke Robatzek Richard J. Morris 《The Plant journal : for cell and molecular biology》2017,92(1):5-18
Guard cells dynamically adjust their shape in order to regulate photosynthetic gas exchange, respiration rates and defend against pathogen entry. Cell shape changes are determined by the interplay of cell wall material properties and turgor pressure. To investigate this relationship between turgor pressure, cell wall properties and cell shape, we focused on kidney‐shaped stomata and developed a biomechanical model of a guard cell pair. Treating the cell wall as a composite of the pectin‐rich cell wall matrix embedded with cellulose microfibrils, we show that strong, circumferentially oriented fibres are critical for opening. We find that the opening dynamics are dictated by the mechanical stress response of the cell wall matrix, and as the turgor rises, the pectinaceous matrix stiffens. We validate these predictions with stomatal opening experiments in selected Arabidopsis cell wall mutants. Thus, using a computational framework that combines a 3D biomechanical model with parameter optimization, we demonstrate how to exploit subtle shape changes to infer cell wall material properties. Our findings reveal that proper stomatal dynamics are built on two key properties of the cell wall, namely anisotropy in the form of hoop reinforcement and strain stiffening. 相似文献
110.
James A. Rickard Joanne A. O’Donnell Joseph M. Evans Najoua Lalaoui Ashleigh R. Poh TeWhiti Rogers James E. Vince Kate E. Lawlor Robert L. Ninnis Holly Anderton Cathrine Hall Sukhdeep K. Spall Toby J. Phesse Helen E. Abud Louise H. Cengia Jason Corbin Sandra Mifsud Ladina Di Rago Donald Metcalf Matthias Ernst Grant Dewson Andrew W. Roberts Warren S. Alexander James M. Murphy Paul G. Ekert Seth L. Masters David L. Vaux Ben A. Croker Motti Gerlic John Silke 《Cell》2014