首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   217篇
  免费   30篇
  247篇
  2021年   4篇
  2020年   3篇
  2018年   4篇
  2017年   4篇
  2016年   5篇
  2015年   4篇
  2014年   13篇
  2013年   13篇
  2012年   13篇
  2011年   9篇
  2010年   7篇
  2009年   8篇
  2008年   6篇
  2007年   4篇
  2006年   8篇
  2005年   3篇
  2004年   4篇
  2003年   5篇
  2002年   7篇
  2001年   4篇
  2000年   6篇
  1998年   6篇
  1997年   5篇
  1996年   3篇
  1995年   3篇
  1994年   3篇
  1993年   5篇
  1992年   6篇
  1991年   2篇
  1990年   8篇
  1989年   3篇
  1988年   7篇
  1987年   3篇
  1986年   5篇
  1984年   7篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1978年   3篇
  1977年   2篇
  1975年   2篇
  1970年   5篇
  1961年   2篇
  1960年   2篇
  1953年   4篇
  1919年   1篇
  1909年   1篇
  1897年   1篇
  1890年   1篇
  1887年   1篇
排序方式: 共有247条查询结果,搜索用时 15 毫秒
71.
Rank, parity, and kinship influence the pattern and frequency of kidnapping interactions in a group of captive bonnet macaques,Macaca radiata. Kidnapping attempts are initiated by parous and nulliparous females toward the infants of lower ranking females. Contrary to the pattern documented in several other species, nulliparous females participate in kidnapping interactions at the same rate as lactating females. Kidnapping attempts are consistently resisted by mothers, and most attempts are unsuccessful. Both the rates and pattern of kidnapping interactions differ within and between lineages. The results suggest that kidnappers gain neither status nor maternal experience and that the mothers of kidnapped infants do not benefit at all. Kidnapping may represent a form of competition among females which is detrimental to both infants and their mothers.  相似文献   
72.
In plants, the rate-limiting step in the pathway for lysine synthesis is catalyzed by the enzyme dihydrodipicolinate synthase (DS), which is encoded by the DapA gene. We previously cloned the soybean (Glycine max cv. Century) DapA gene in Escherichia coli to express functional soybean DS protein. Like the wild-type soybean DS enzyme, the DS activity encoded by the cloned gene was extremely sensitive to feedback inhibition by micromolar concentrations of lysine. Three mutants of the soybean DapA gene were constructed using PCR: one with a single amino acid substitution at codon 104, another with a single amino acid substitution at codon 112, and a mutant containing both modifications. When expressed in E. coli, the mutant DS activities were insensitive to lysine at concentrations up to 1 mM.  相似文献   
73.
There is a need for vaccines that can protect broadly across all influenza A strains. We have produced a pseudotyped influenza virus based on suppression of the A/PR/8/34 hemagglutinin signal sequence (S-FLU) that can infect cells and express the viral core proteins and neuraminidase but cannot replicate. We show that when given by inhalation to mice, S-FLU is nonpathogenic but generates a vigorous T cell response in the lung associated with markedly reduced viral titers and weight loss after challenge with H1 and H3 influenza viruses. These properties of S-FLU suggest that it may have potential as a broadly protective A virus vaccine, particularly in the setting of a threatened pandemic before matched subunit vaccines become available.  相似文献   
74.
Primary growth is characterized by cell expansion facilitated by water uptake generating hydrostatic (turgor) pressure to inflate the cell, stretching the rigid cell walls. The multiple source theory of root growth hypothesizes that root growth involves transport of water both from the soil surrounding the growth zone and from the mature tissue higher in the root via phloem and protophloem. Here, protophloem water sources are used as boundary conditions in a classical, three-dimensional model of growth-sustaining water potentials in primary roots. The model predicts small radial gradients in water potential, with a significant longitudinal gradient. The results improve the agreement of theory with empirical studies for water potential in the primary growth zone of roots of maize (Zea mays). A sensitivity analysis quantifies the functional importance of apical phloem differentiation in permitting growth and reveals that the presence of phloem water sources makes the growth-sustaining water relations of the root relatively insensitive to changes in root radius and hydraulic conductivity. Adaptation to drought and other environmental stresses is predicted to involve more apical differentiation of phloem and/or higher phloem delivery rates to the growth zone.Plant growth involves water uptake by the cells and expansion of the cell walls under the resultant turgor (internal hydrostatic pressure). The water uptake and increase in cell volume are accompanied by nutrient and metabolite deposition. Thus, hydraulics of growth (i.e. the energies, conductivities, and fluxes of water in growing tissue) are fundamental to understanding primary plant growth. Quantitatively, the driving force for water movement in the plant, as in other porous media, is considered to be the gradient in water potential (Ψ), an energy per unit volume given in MPa. Thus, primary growth can be modeled by considering plant tissue to be a distributed sink for water, with low Ψ and/or high hydraulic conductivity driving water deposition into rapidly expanding regions. Molz and Boyer (1978) developed the theoretical basis for predicting the radial water flux in one dimension within the intercalary meristem of growing soybean (Glycine max) hypocotyls. In this aerial tissue, water moves from the xylem both outward to the epidermis and inward to the pith. Thus, in the growing hypocotyls, Ψ is predicted to be least negative in the xylem and to decrease toward the epidermis and the pith. These predictions for growth-induced or growth-sustaining Ψ were confirmed when the experimental technology became sensitive enough to detect the gradients in Ψ (Nonami and Boyer, 1993). Passioura and Boyer (2003) expanded the theory to incorporate anatomical detail and corresponding spatial patterns of hydraulic conductivity. Their model explains experimental results on water relations during growth transients for many areas of the plant.The hydraulics of root growth differ from shoot growth because of differences in xylem anatomy. Root xylem becomes functional perhaps 1 cm behind the tip and well behind the growth zone. To enter the growing cells near the maize (Zea mays) root tip, externally supplied metabolites must move several millimeters without phloem (Fig. 1), and any water supplied by functional xylem would need to move more than 1 cm. Silk and Wagner (1980) provided a theoretical framework for a two-dimensional treatment of the growth-sustaining Ψ gradients in maize roots. They assumed that the water source was external (the soil or root-bathing medium) and that the root surface was in equilibrium with the soil or bathing medium, so that the flow path to growing cells in the root was predicted to be primarily inward. As in the shoot model, growing tissue was seen as a distributed sink for water. However, since the publication of that theory, experimental studies have revealed that the root tip is not in equilibrium with the bathing medium (Pritchard et al., 1996, 2000; Gould et al., 2004; Shimazaki et al., 2005). Pressure probes combined with osmotic potential determinations have shown that the Ψ of exterior root cells ranges from −0.17 to −0.6 MPa, depending on environmental conditions. This range is more negative than in the nutrient medium. Furthermore, evidence has accumulated that at least some water for root growth comes from the phloem. The most obvious evidence is perhaps the growth of nodal (adventitious) roots of maize, rice (Oryza sativa), and other gramineous plants (Westgate and Boyer, 1985). This growth is a normal part of crop development. The nodal roots grow through air and then dry layers of surface soil, making it unlikely that the expanding root cells obtain water from the dry media surrounding the root. Empirical and theoretical studies have concluded that the phloem probably provides water for growth of the primary maize root (Bret-Harte and Silk, 1994; Frensch and Hsiao, 1995; Pritchard, 1996; Pritchard et al., 1996, 2000; Hukin et al., 2002; Gould et al., 2004).Open in a separate windowFigure 1.Primary root growth zone. The tip of the seedling root of maize showing the meristem as part of the apical third of the elongation zone. The boundary of this root section was digitized to provide the computational body-fit grid used for the model. [See online article for color version of this figure.]The model described here follows the concepts of Pritchard and colleagues (1996, 2000) in assuming a pressure-driven bulk flow of solution through the phloem to the region where phloem is beginning to be functional (1–4 mm from the apex; Fig. 1). Water movement can occur from both the surrounding soil and the developing phloem. Henceforth, we refer to the “external water source equilibrium” or EE model, for which the boundary condition is solely an exterior medium of fairly high Ψ (−0.005 to −0.05 MPa) and no conditions are placed on the phloem Ψ (Silk and Wagner (1980), that the exterior of the root is in equilibrium with its bathing solution. Empirical studies have shown that this model is not realistic, because the root maintains peripheral cells at more negative Ψ than the bathing medium. Since this is hypothesized to occur by deposition of apoplastic solutes, we will refer to a model with external water source and apoplastic solutes near the exterior as the EASE model.

Table I.

Acronyms for models and definitions of symbols used in mathematical modeling
AcronymBoundary Condition
EEExternal water source Equilibrium
EASEExternal water source and Apoplastic Solutes near the Exterior
PEWSPhloem and External Water Sources
SymbolPhysical SignificanceUnits
LRelative elemental growth rate h−1
Growth velocity vectormm h−1
Water flux vectormm h−1
Hydraulic conductivity tensormm2 s−1 MPa−1
ΨTotal water potentialMPa
Unit normal to the surface
sControl surfacemm2
VControl volumemm3
rRadial coordinatemm
zLongitudinal coordinatemm
x, yCartesian coordinatesmm
JJacobian Matrix of Transformation
Open in a separate windowA “multiple source” model places boundary conditions on the Ψ of both the bathing medium and the phloem to simulate both external and internal source activity, so we will refer to this model as the PEWS (for phloem and external water sources) model.  相似文献   
75.
Darwin was struck by the many similarities between humans and other primates and believed that these similarities were the product of common ancestry. He would be even more impressed by the similarities if he had known what we have learned about primates over the last 50 years. Genetic kinship has emerged as the primary organizing force in the evolution of primate social organization and the patterning of social behaviour in non-human primate groups. There are pronounced nepotistic biases across the primate order, from tiny grey mouse lemurs (Microcebus murinus) that forage alone at night but cluster with relatives to sleep during the day, to cooperatively breeding marmosets that rely on closely related helpers to rear their young, rhesus macaque (Macaca mulatta) females who acquire their mother''s rank and form strict matrilineal dominance hierarchies, male howler monkeys that help their sons maintain access to groups of females and male chimpanzees (Pan troglodytes) that form lasting relationships with their brothers. As more evidence of nepotism has accumulated, important questions about the evolutionary processes underlying these kin biases have been raised. Although kin selection predicts that altruism will be biased in favour of relatives, it is difficult to assess whether primates actually conform to predictions derived from Hamilton''s rule: br > c. In addition, other mechanisms, including contingent reciprocity and mutualism, could contribute to the nepotistic biases observed in non-human primate groups. There are good reasons to suspect that these processes may complement the effects of kin selection and amplify the extent of nepotistic biases in behaviour.  相似文献   
76.
Microtubules of the mitotic spindle in mammalian somatic cells are focused at spindle poles, a process thought to include direct capture by astral microtubules of kinetochores and/or noncentrosomally nucleated microtubule bundles. By construction and analysis of a conditional loss of mitotic function allele of the nuclear mitotic apparatus (NuMA) protein in mice and cultured primary cells, we demonstrate that NuMA is an essential mitotic component with distinct contributions to the establishment and maintenance of focused spindle poles. When mitotic NuMA function is disrupted, centrosomes provide initial focusing activity, but continued centrosome attachment to spindle fibers under tension is defective, and the maintenance of focused kinetochore fibers at spindle poles throughout mitosis is prevented. Without centrosomes and NuMA, initial establishment of spindle microtubule focusing completely fails. Thus, NuMA is a defining feature of the mammalian spindle pole and functions as an essential tether linking bulk microtubules of the spindle to centrosomes.  相似文献   
77.
Cathodic protection (CP) is a widely utilised method of corrosion prevention in aqueous systems. There is evidence that the electrochemical changes it produces on a metal surface influence the chemistry of the water and the settlement of fouling organisms. The interaction is in both directions, and fouling organisms and their products have an influence on the CP and on calcareous deposits formed on the metal in marine environments. The studies described show that on both stainless and nonstainless steels, CP retards the development of aerobic bacterial fouling. Increasing the CP decreases the number of bacteria. Additionally, the presence of organic material affects both the current required to maintain CP and the nature of the calcareous deposits formed. The results are discussed in relation to the electrochemistry of the system.  相似文献   
78.
Bjerkandera adusta produces many chlorometabolites including chlorinated anisyl metabolites (CAMs) and 1-arylpropane-1,2-diols (1, 2, 3, 4) as idiophasic metabolic products of L-phenylalanine. These diols are stereoselectively biosynthesized from a C7-unit (benzylic, from L-phenylalanine) and a C2-unit, of unknown origin, as predominantly erythro (1R,2S) enantiomers. Of the labeled amino acids tested as possible C2-units, at the 4-10 mM level, none were found to efficiently label the 2,3-propane carbons of the diols. However, glycine (2-13C), L-serine (2,3,3-d3) and L-methionine (methyl-d3) entered the biomethylation pathway. Neither pyruvate (2,3-13C2), acetate (1,2-13C2), acetaldehyde (d4) nor ethanol (ethyl-d5) labeled the 2,3-propane carbons of the diols at the 4-10 mM level. Pyruvate (2,3-13C2) and L-serine (2,3,3-d3) (which also entered the biomethylation pathway) did, however, effectively label the 2,3-propane carbons of the alpha-ketols and diols at the 40 mM level as evidenced by mass spectrometry. Glycerol (1,1,2,3,3-d5) also appeared to label one of the 2,3-propane carbons (ca. 5% as 2H2 in the C3 side chain) as suggested by mass spectrometric data and also entered the biomethylation pathway, likely via amino acid synthesis. Glycerol (through pyruvate), therefore, likely supplies C2 and C3 of the propane side chain with arylpropane diol biosynthesis. Incubation of B. adusta with synthetic [2-2H1, 2-18O]-glycerol showed that neither 2H nor 18O were incorporated in the alpha-ketols or diols. The oxygen atom on the C2 of the ketols/diols, therefore, does not appear to come from the oxygen atom on the C2 of glycerol. Glycerol, however, can readily form L-serine (which can then form pyruvate via PLP/serine dehydratase and involve transamination washing out the 18O label and providing the oxygen from water), and can then go on to label the C2-unit. Labeled alpha-ketol, phenyl acetyl carbinol (5) (PAC; ring-d(5), 2,3-13C2 propane) cultured with B. adusta leads to stereospecific reduction to the (1R,2S)-diol (6) (ring-d5 and 2,3-13C2); in all other metabolites produced, the 2,3-13C2) label is washed out. Incubation of the fungus with 4-fluorobenzaldehyde (13) produces a pooling of predominantly erythro (1R,2S) 1-(4'-fluorophenyl)-1,2-propane diol (18 as diacetate) (through the corresponding alpha-ketols 16, 17). Blocking the para-position with fluorine thus appears to prevent ring oxygenation and also chlorination, forcing the conclusion that para-ring oxygenation precedes meta-chlorination.  相似文献   
79.
Centromere-associated protein-E (CENP-E) is an essential mitotic kinesin that is required for efficient, stable microtubule capture at kinetochores. It also directly binds to BubR1, a kinetochore-associated kinase implicated in the mitotic checkpoint, the major cell cycle control pathway in which unattached kinetochores prevent anaphase onset. Here, we show that single unattached kinetochores depleted of CENP-E cannot block entry into anaphase, resulting in aneuploidy in 25% of divisions in primary mouse fibroblasts in vitro and in 95% of regenerating hepatocytes in vivo. Without CENP-E, diminished levels of BubR1 are recruited to kinetochores and BubR1 kinase activity remains at basal levels. CENP-E binds to and directly stimulates the kinase activity of purified BubR1 in vitro. Thus, CENP-E is required for enhancing recruitment of its binding partner BubR1 to each unattached kinetochore and for stimulating BubR1 kinase activity, implicating it as an essential amplifier of a basal mitotic checkpoint signal.  相似文献   
80.
Tetrameric MHC/peptide complexes are important tools for enumerating, phenotyping, and rapidly cloning Ag-specific T cells. It remains however unclear whether they can reliably distinguish between high and low avidity T cell clones. In this report, tetramers with mutated CD8 binding site selectively stain higher avidity human and murine CTL capable of recognizing physiological levels of Ag. Furthermore, we demonstrate that CD8 binding significantly enhances the avidity as well as the stability of interactions between CTL and cognate tetramers. The use of CD8-null tetramers to identify high avidity CTL provides a tool to compare vaccination strategies for their ability to enhance the frequency of high avidity CTL. Using this technique, we show that DNA priming and vaccinia boosting of HHD A2 transgenic mice fail to selectively expand large numbers of high avidity NY-ESO-1(157-165)-specific CTL, possibly due to the large amounts of antigenic peptide delivered by the vaccinia virus. Furthermore, development of a protocol for rapid identification of high avidity human and murine T cells using tetramers with impaired CD8 binding provides an opportunity not only to monitor expansion of high avidity T cell responses ex vivo, but also to sort high avidity CTL clones for adoptive T cell transfer therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号