排序方式: 共有84条查询结果,搜索用时 31 毫秒
51.
Lauvrak SU Wälchli S Iversen TG Slagsvold HH Torgersen ML Spilsberg B Sandvig K 《Molecular biology of the cell》2006,17(3):1096-1109
Shiga toxin (Stx) is composed of an A-moiety that inhibits protein synthesis after translocation into the cytosol, and a B-moiety that binds to Gb3 at the cell surface and mediates endocytosis of the toxin. After endocytosis, Stx is transported retrogradely to the endoplasmic reticulum, and then the A-fragment enters the cytosol. In this study, we have investigated whether toxin-induced signaling is involved in its entry. Stx was found to activate Syk and induce rapid tyrosine phosphorylation of several proteins, one protein being clathrin heavy chain. Toxin-induced clathrin phosphorylation required Syk activity, and in cells overexpressing Syk, a complex containing clathrin and Syk could be demonstrated. Depletion of Syk by small interfering RNA, expression of a dominant negative Syk mutant (Syk KD), or treatment with the Syk inhibitor piceatannol inhibited not only Stx-induced clathrin phosphorylation but also endocytosis of the toxin. Also, Golgi transport of Stx was inhibited under all these conditions. In conclusion, our data suggest that Stx regulates its entry into target cells. 相似文献
52.
Nils-Erik Huseby Nana Asare Silje Wetting Idun Merete Mikkelsen Bente Mortensen Baldur Sveinbjørnsson 《Free radical research》2013,47(1):99-107
n -Glutamyltransferase (GGT) has a central role in glutathione homeostasis by initiating the breakdown of extracellular GSH. We investigated in the present study whether nitric oxide exposure of CC531 rat colon carcinoma cells modulates GGT and how the activity of the enzyme affects the level of intracellular GSH. The data show that GGT activity was induced in a dose-related manner by two NO-donors (spermineNONOate and nitrosoglutathione) and that antioxidants partly inhibited the induction. SpermineNONOate lowered intracellular GSH and induced apoptosis. Cultivating the cells in cystine-depleted medium also resulted in a 50% lowering of GSH, but this was avoided when GSH was added to the medium. This effect was mediated by the activity of GGT and shown after inhibiting GGT activity with acivicin and cyst(e)ine transporters with alanine and homocysteic acid. This shows that the cells benefit from GGT in maintaining the intracellular GSH level. Cells with induced GGT activity obtained after NO incubation showed a higher uptake rate of cysteine (2-fold), measured by incubating the cells with 35 S-radiolabeled GSH. The enzyme was also induced by interferon- n and tumor necrosis factor- f, but this induction was not connected to activation of the endogenous nitric oxide synthase, as the addition of aminoguanidine, a NO-synthase inhibitor, did not affect the induction. The present study shows that the activity of GGT is upregulated by NO-donors and that the colon carcinoma cells, when cultivated in cystine-depleted medium, benefit from the enzyme in maintaining the intracellular level of GSH. Thus, the enzyme will add to the protective measures of the tumor cells during nitrosative stress. 相似文献
53.
The aim of the present study was to investigate the potential of different types of pectin as stabilizers for liposomal drug delivery systems. Positively charged liposomes were coated with commercially available and purified low-methoxylated (LM), high-methoxylated (HM) and amidated (AM) pectins. The samples were stored for up to 12 weeks at 4°C, at room temperature and at 35°C. The change in liposomal size and size distribution, zeta potential, pH, leakage of encapsulated carboxyfluorescein (CF), and lipid degradation were studied. All the types of pectin were found to protect the liposomes against aggregation during storage. The pectin coat did not affect the permeability of the liposome membrane. HM and LM pectin seemed to be the most promising types of pectin due to minimal changes in the zeta potentials during storage for these samples and no detectable lipid degradation. It is concluded that pectin may be used for stabilizing liposomal drug delivery systems. 相似文献
54.
An ecological 'footprint' of climate change 总被引:2,自引:0,他引:2
Walther GR Berger S Sykes MT 《Proceedings. Biological sciences / The Royal Society》2005,272(1571):1427-1432
Recently, there has been increasing evidence of species' range shifts due to changes in climate. Whereas most of these shifts relate ground truth biogeographic data to a general warming trend in regional or global climate data, we here present a reanalysis of both biogeographic and bioclimatic data of equal spatio-temporal resolution, covering a time span of more than 50 years. Our results reveal a coherent and synchronous shift in both species' distribution and climate. They show not only a shift in the northern margin of a species, which is in concert with gradually increasing winter temperatures in the area, they also confirm the simulated species' distribution changes expected from a bioclimatic model under the recent, relatively moderate climate change. 相似文献
55.
Inhibition of family 18 chitinases is emerging as a target for pest and fungal control as well as asthma and inflammatory therapy. One of the best known inhibitors for these enzymes is allosamidin, a natural product. While interactions of this compound with family 18 chitinases have been studied in much detail by X-ray crystallography and standard enzymology, details of the driving forces behind its tight binding remain unknown. We have studied the thermodynamics of allosamidin binding to chitinase B (ChiB), a family 18 chitinase from Serratia marcescens, using isothermal titration calorimetry. At pH 6.0, Kd is 0.16 +/- 0.04 microM, and the binding reaction is entropically driven (DeltaSr = 44 cal/K mol) with an enthalpic penalty (DeltaHr = 3.8 +/- 0.2 kcal/mol). Dissection of the entropic term shows that a favorable conformational change in the allosamidin-ChiB complex (DeltaSconf = 37 cal/K mol) is the main contributor to the reaction. At pH 8.5, Kd decreases to 0.03 muM and the binding reaction is less entropically favorable (DeltaSr = 30 cal/K mol). While the solvation entropy change (DeltaSsolv) increases from 15 cal/K mol at pH 6.0 to 46 cal/K mol at pH 8.5, DeltaSconf becomes small and negative (-8 cal/K mol) because of an enthalpy-entropy compensation. Analyses of proton transfer showed that at pH 6.0 binding of allosamidin requires deprotonation of the Asp142-Glu144 catalytic diad. At pH 8.5, the 142-144 diad is ionized in the native enzyme, relieving the deprotonation penalty of binding and explaining why binding becomes enthalpically favorable (DeltaHr = -1.2 +/- 0.2 kcal/mol). 相似文献
56.
Syversen SW Goll GL Haavardsholm EA Bøyesen P Lea T Kvien TK 《Arthritis research & therapy》2008,10(2):R28
Introduction
Prognosis in rheumatoid arthritis (RA) is difficult to assess. The aim of this study was to examine whether serum levels of a spectrum of cytokines were predictive of radiographic progression in early RA patients. 相似文献57.
Kalland ME Solheim SA Skånland SS Taskén K Berge T 《Experimental cell research》2012,318(14):1611-1619
The transmembrane protein Cbp/PAG (Csk binding protein/phospho-protein associated with glycosphingolipid-enriched microdomains) has a negative regulatory role in T cell activation as an adapter for C-terminal Src kinase, Csk. In T cells, membrane docking of Csk is promoted by binding to FynT-phosphorylated Cbp/PAG (pTyr317) to allow targeting of substrates residing in lipid rafts. Here, we investigate a potential parallel position for Cbp/PAG and the Src kinase Lyn in early B cell receptor signaling. Using normal and transformed B cells, we have compared signal profiles of BCR-triggered responses created by phospho-specific flow cytometry. In human normal B cells, our data show that reduced Cbp/PAG levels leads to enhanced and prolonged activation of proximal signaling mediators, while over-expression of the adapter in normal, EBV-transformed cells results in reduced calcium flux. Taken together, our findings support a negative regulatory function for Cbp/PAG in proximal BCR signaling in these cells. 相似文献
58.
Silje Reiseter Ragnar Gunnarsson Jukka Corander Joanna Haydon May Brit Lund Trond Mogens Aaløkken Eli Taraldsrud Siri Opsahl Hetlevik Øyvind Molberg 《Arthritis research & therapy》2017,19(1):284
Background
The phenotypic stability of mixed connective tissue disease (MCTD) is not clear, and knowledge about disease activity and remission is scarce. We aimed to establish the occurrence of evolution from MCTD to another defined rheumatic condition, and the prevalence and durability of remission after long-term observation.Methods
In this large population-based prospective observational MCTD cohort study (N?=?118), disease conversion was defined by the development of new auto-antibodies and clinical features compliant with another well-defined rheumatic condition. Remission was defined by a combination of systemic lupus erythematosus disease activity index 2000 (SLEDAI-2 K) of 0 and European League Against Rheumatism scleroderma trials and research (EUSTAR) activity index <2.5. Predictors of phenotypic stability and disease remission were assessed by logistic regression.Results
Among 118 patients, 14 (12%) developed another well-defined rheumatic condition other than MCTD after mean disease duration of 17 (SD 9) years. Puffy hands predicted a stable MCTD phenotype in univariable regression analysis (OR 7, CI 2–27, P?=?.010). Disease activity defined by SLEDAI-2 K, decreased gradually across the observation period and?>?90% of patients had EUSTAR activity index <2.5. There were 13% patients in remission throughout the whole mean observation period of 7 (SD 2) years. The strongest predictor of remission was percentage of predicted higher forced vital capacity.Conclusions
Our results strengthen the view of MCTD as a relatively stable disease entity. Long-term remission in MCTD is not frequent; however, the low SLEDAI-2 K and EUSTAR scores during the observation period suggests that the disease runs a milder course than systemic lupus erythematosus and systemic sclerosis.59.
Vidar M. Steen Chirag Nepal Kari M. Ersland Rita Holdhus Marianne N?vdal Siri M. Ratvik Silje Skrede Bjarte H?vik 《PloS one》2013,8(11)
Recent meta-analyses of schizophrenia genome-wide association studies (GWASs) have identified the CUB and SUSHI multiple domains 1 (CSMD1) gene as a statistically strong risk factor. CSMD1 is a complement control-related protein suggested to inhibit the classical complement pathway, being expressed in developing neurons. However, expression of CSMD1 is largely uncharacterized and relevance for behavioral phenotypes is not previously demonstrated. Here, we assess neuropsychological behaviors of a Csmd1 knockout (KO) mouse in a selection of standard behavioral tests. Deregulation of neuropsychological responses were observed in both the open field and the elevated plus maze tests, in which KO mice spent 55% and 33% less time than WT littermate mice in open areas, respectively. Altered behaviors were also observed in tail suspension and to higher acoustic stimuli, for which Csmd1 KO mice showed helplessness and moderate increase in startle amplitude, respectively. Furthermore, Csmd1 KO mice also displayed increased weight-gain and glucose tolerance, similar to a major phenotype of the metabolic syndrome that also has been associated to the human CSMD1 locus. Consistent with a role in the control of behaviors, Csmd1 was found highly expressed in the central nervous system (CNS), and with some expression in visceral fat and ovary, under tissue-specific control by a novel promoter-associated lncRNA. In summary, disruption of Csmd1 induces behaviors reminiscent of blunted emotional responses, anxiety and depression. These observations suggest an influence of the CSMD1 schizophrenia susceptibility gene on psychopathology and endophenotypes of the negative symptom spectra. 相似文献
60.
The association of temporal lobe epilepsy with depression and other neuropsychiatric disorders has been known since the early beginnings of neurology and psychiatry. However, only recently have in vivo and ex vivo techniques such as Positron Emission Tomography, Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy in combination with refined animal models and behavioral tests made it possible to identify an emerging pattern of common pathophysiological mechanisms. We now have growing evidence that in both disorders altered interaction of serotonergic and noradrenergic neurons with glutamatergic systems is associated with abnormal neuronal circuits and hyperexcitability. Neuronal hyperexcitability can possibly evoke seizure activity as well as disturbed emotions. Moreover, decreased synaptic levels of neurotransmitters and high glucocorticoid levels influence intracellular signaling pathways such as cAMP, causing disturbances of brain-derived and other neurotrophic factors. These may be associated with hippocampal atrophy seen on Magnetic Resonance Imaging and memory impairment as well as altered fear processing and transient hypertrophy of the amygdala. Positron Emission Tomography studies additionally suggest hypometabolism of glucose in temporal and frontal lobes. Last, but not least, in temporal lobe epilepsy and depression astrocytes play a role that reaches far beyond their involvement in hippocampal sclerosis and ultimately, therapeutic regulation of glial-neuronal interactions may be a target for future research. All these mechanisms are strongly intertwined and probably bidirectional such that the structural and functional alterations from one disease increase the risk for developing the other. This review provides an integrative update of the most relevant experimental and clinical data on temporal lobe epilepsy and its association with depression. 相似文献