首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   6篇
  84篇
  2022年   1篇
  2021年   3篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   4篇
  2014年   8篇
  2013年   6篇
  2012年   12篇
  2011年   6篇
  2010年   3篇
  2009年   5篇
  2008年   8篇
  2007年   3篇
  2006年   4篇
  2005年   3篇
  2004年   1篇
  2003年   5篇
  2002年   2篇
排序方式: 共有84条查询结果,搜索用时 0 毫秒
41.
Base excision repair is the major pathway for removal of oxidative DNA base damage. This pathway is initiated by DNA glycosylases, which recognize and excise damaged bases from DNA. In this work, we have purified the glycosylase domain (GD) of human DNA glycosylase NEIL3. The substrate specificity has been characterized and we have elucidated the catalytic mechanisms. GD NEIL3 excised the hydantoin lesions spiroiminodihydantoin (Sp) and guanidinohydantoin (Gh) in single-stranded (ss) and double-stranded (ds) DNA efficiently. NEIL3 also removed 5-hydroxy-2′-deoxycytidine (5OHC) and 5-hydroxy-2′-deoxyuridine (5OHU) in ssDNA, but less efficiently than hydantoins. Unlike NEIL1 and NEIL2, which possess a β,δ-elimination activity, NEIL3 mainly incised damaged DNA by β-elimination. Further, the base excision and strand incision activities of NEIL3 exhibited a non-concerted action, indicating that NEIL3 mainly operate as a monofunctional DNA glycosylase. The site-specific NEIL3 mutant V2P, however, showed a concerted action, suggesting that the N-terminal amino group in Val2 is critical for the monofunctional modus. Finally, we demonstrated that residue Lys81 is essential for catalysis.  相似文献   
42.
43.
44.
Gamma-glutamyltransferase (GGT) has a central role in glutathione homeostasis by initiating the breakdown of extracellular GSH. We investigated in the present study whether nitric oxide exposure of CC531 rat colon carcinoma cells modulates GGT and how the activity of the enzyme affects the level of intracellular GSH. The data show that GGT activity was induced in a dose-related manner by two NO-donors (spermineNONOate and nitrosoglutathione) and that antioxidants partly inhibited the induction. SpermineNONOate lowered intracellular GSH and induced apoptosis. Cultivating the cells in cystine-depleted medium also resulted in a 50% lowering of GSH, but this was avoided when GSH was added to the medium. This effect was mediated by the activity of GGT and shown after inhibiting GGT activity with acivicin and cyst(e)ine transporters with alanine and homocysteic acid. This shows that the cells benefit from GGT in maintaining the intracellular GSH level. Cells with induced GGT activity obtained after NO incubation showed a higher uptake rate of cysteine (2-fold), measured by incubating the cells with 5S-radiolabeled GSH. The enzyme was also induced by interferon-gamma and tumor necrosis factor-alpha, but this induction was not connected to activation of the endogenous nitric oxide synthase, as the addition of aminoguanidine, a NO-synthase inhibitor, did not affect the induction. The present study shows that the activity of GGT is upregulated by NO-donors and that the colon carcinoma cells, when cultivated in cystine-depleted medium, benefit from the enzyme in maintaining the intracellular level of GSH. Thus, the enzyme will add to the protective measures of the tumor cells during nitrosative stress.  相似文献   
45.
Cellular asymmetry plays a major role in the ageing and evolution of multicellular organisms. However, it remains unknown how the cell distinguishes ‘old’ from ‘new’ and whether asymmetry is an attribute of highly specialized cells or a feature inherent in all cells. Here, we investigate the segregation of three asymmetric features: old and new DNA, the spindle pole body (SPB, the centrosome analogue) and the old and new cell ends, using a simple unicellular eukaryote, Schizosaccharomyces pombe. To our knowledge, this is the first study exploring three asymmetric features in the same cells. We show that of the three chromosomes of S. pombe, chromosome I containing the new parental strand, preferentially segregated to the cells inheriting the old cell end. Furthermore, the new SPB also preferentially segregated to the cells inheriting the old end. Our results suggest that the ability to distinguish ‘old’ from ‘new’ and to segregate DNA asymmetrically are inherent features even in simple unicellular eukaryotes.  相似文献   
46.
Deep sympatric intraspecific divergence in mtDNA may reflect cryptic species or formerly distinct lineages in the process of remerging. Preliminary results from DNA barcoding of Scandinavian butterflies and moths showed high intraspecific sequence variation in the autumnal moth, Epirrita autumnata. In this study, specimens from different localities in Norway and some samples from Finland and Scotland, with two congeneric species as outgroups, were sequenced with mitochondrial and nuclear markers to resolve the discrepancy found between mtDNA divergence and present species‐level taxonomy. We found five COI sub‐clades within the E. autumnata complex, most of which were sympatric and with little geographic structure. Nuclear markers (ITS2 and Wingless) showed little variation and gave no indications that E. autumnata comprises more than one species. The samples were screened with primers for Wolbachia outer surface gene (wsp) and 12% of the samples tested positive. Two Wolbachia strains were associated with different mtDNA sub‐clades within E. autumnata, which may indicate indirect selection/selective sweeps on haplotypes. Our results demonstrate that deep mtDNA divergences are not synonymous with cryptic speciation and this has important implications for the use of mtDNA in species delimitation, like in DNA barcoding.  相似文献   
47.
Genes of the major histocompatibility complex (MHC) are essential in vertebrate adaptive immunity, and they are highly diverse and duplicated in many lineages. While it is widely established that pathogen‐mediated selection maintains MHC diversity through balancing selection, the role of mate choice in shaping MHC diversity is debated. Here, we investigate female mating preferences for MHC class II (MHCII) in the bluethroat (Luscinia svecica), a passerine bird with high levels of extra‐pair paternity and extremely duplicated MHCII. We genotyped family samples with mixed brood paternity and categorized their MHCII alleles according to their functional properties in peptide binding. Our results strongly indicate that females select extra‐pair males in a nonrandom, self‐matching manner that provides offspring with an allelic repertoire size closer to the population mean, as compared to offspring sired by the social male. This is consistent with a compatible genes model for extra‐pair mate choice where the optimal allelic diversity is intermediate, not maximal. This golden mean presumably reflects a trade‐off between maximizing pathogen recognition benefits and minimizing autoimmunity costs. Our study exemplifies how mate choice can reduce the population variance in individual MHC diversity and exert strong stabilizing selection on the trait. It also supports the hypothesis that extra‐pair mating is adaptive through altered genetic constitution in offspring.  相似文献   
48.
The translation initiation factor 2 alpha (eIF2alpha)-kinase, dsRNA-activated protein kinase (PKR), constitutes one of the major antiviral proteins activated by viral infection of vertebrates. PKR is activated by viral double-stranded RNA and subsequently phosphorylates the alpha-subunit of translation initiation factor eIF2. This results in overall down regulation of protein synthesis in the cell and inhibition of viral replication. Fish appear to have a PKR-like protein that has Z-DNA binding domains instead of dsRNA binding domains in the regulatory domain, and has thus been termed Z-DNA binding protein kinase (PKZ). We present the cloning of the Atlantic salmon PKZ cDNA and show its upregulation by interferon in Atlantic salmon TO cells and poly inosinic poly cytodylic acid in head kidney. We also demonstrate that recombinant Atlantic salmon PKZ, expressed in Escherichia coli, phosphorylates eIF2alphain vitro. This is the first demonstration that PKZ is able to phosphorylate eIF2alpha. PKZ activity, as measured by phosphorylation of eIF2alpha, was increased after addition of Z-DNA, but not by dsRNA. In addition, we show that wild-type Atlantic salmon PKZ, but not the kinase defective variant K217R, has a direct inhibitory effect on protein synthesis after transient expression in Chinook salmon embryo cells. Overall, the results support a role for PKZ, like PKR, in host defense against virus infection.  相似文献   
49.
Shiga toxin (Stx) is composed of an A-moiety that inhibits protein synthesis after translocation into the cytosol, and a B-moiety that binds to Gb3 at the cell surface and mediates endocytosis of the toxin. After endocytosis, Stx is transported retrogradely to the endoplasmic reticulum, and then the A-fragment enters the cytosol. In this study, we have investigated whether toxin-induced signaling is involved in its entry. Stx was found to activate Syk and induce rapid tyrosine phosphorylation of several proteins, one protein being clathrin heavy chain. Toxin-induced clathrin phosphorylation required Syk activity, and in cells overexpressing Syk, a complex containing clathrin and Syk could be demonstrated. Depletion of Syk by small interfering RNA, expression of a dominant negative Syk mutant (Syk KD), or treatment with the Syk inhibitor piceatannol inhibited not only Stx-induced clathrin phosphorylation but also endocytosis of the toxin. Also, Golgi transport of Stx was inhibited under all these conditions. In conclusion, our data suggest that Stx regulates its entry into target cells.  相似文献   
50.
Aim  Many species are currently expanding their ranges in response to climate change, but the mechanisms underlying these range expansions are in many cases poorly understood. In this paper we explore potential climatic factors governing the recent establishment of new palm populations far to the north of any other viable palm population in the world.
Location  Southern Switzerland, Europe, Asia and the world.
Methods  We identified ecological threshold values for the target species, Trachycarpus fortunei , based on gridded climate data, altitude and distributional records from the native range and applied them to the introduced range using local field monitoring and measured meteorological data as well as a bioclimatic model.
Results  We identified a strong relationship between minimum winter temperatures, influenced by growing season length and the distribution of the palm in its native range. Recent climate change strongly coincides with the palm's recent spread into southern Switzerland, which is in concert with the expansion of the global range of palms across various continents.
Main conclusions  Our results strongly suggest that the expansion of palms into (semi-)natural forests is driven by changes in winter temperature and growing season length and not by delayed population expansion. This implies that this rapid expansion is likely to continue in the future under a warming climate. Palms in general, and T. fortunei in particular, are significant bioindicators across continents for present-day climate change and reflect a global signal towards warmer conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号