首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   12篇
  126篇
  2024年   2篇
  2023年   1篇
  2022年   5篇
  2021年   4篇
  2020年   4篇
  2019年   4篇
  2018年   6篇
  2017年   3篇
  2016年   11篇
  2015年   6篇
  2014年   10篇
  2013年   3篇
  2012年   13篇
  2011年   7篇
  2010年   7篇
  2009年   5篇
  2008年   2篇
  2007年   6篇
  2006年   2篇
  2005年   5篇
  2004年   2篇
  2003年   4篇
  2002年   3篇
  1992年   1篇
  1985年   2篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1977年   1篇
  1972年   1篇
  1971年   1篇
  1931年   1篇
排序方式: 共有126条查询结果,搜索用时 15 毫秒
31.
32.
Batrachochytrium dendrobatidis (Bd), an amphibian fungal pathogen, has infected >500 species and caused extinctions or declines in >200 species worldwide. Despite over a decade of research, little is known about its invasion biology. To better understand this, we conducted a museum specimen survey (1910–1997) of Bd in amphibians on 11 California islands and found a pattern consistent with the emergence of Bd epizootics on the mainland, suggesting that geographic isolation did not prevent Bd invasion. We propose that suitable habitat, host diversity, and human visitation overcome isolation from the mainland and play a role in Bd invasion.  相似文献   
33.
This study investigates the responses of white sturgeon larvae (Acipenser transmontanus) to starvation and thermal stress, through the measurement of nutritional status (i.e. growth performances) and cellular biomarkers: heat shock proteins (Hsp) 70 and 90. White sturgeon larvae (25 day post hatch; initial weight 179.0 ± 5.1 mg) were fed (20% body weight per day) or starved for 24, 48 or 72 hrs. Every 24 hrs, five larvae from each of the starved or fed treatment replicates were exposed to heat shock resulting from an increase in water temperature from 19°C to 26°C, at a rate of 1°C per 15 min, and maintained at 26°C for 4 hrs. No mortality was observed in this study. Starvation significantly (p < 0.05) decreased the body weight and body contents of energy, protein, and lipid of the experimental larvae, compared to the fed larvae. Heat shock induced the expressions of Hsp70 and Hsp90 in both the fed and starved group; however, starvation reduced the induction at all sampling points. The current study demonstrates that poor larval nutritional status, assessed by the aforementioned parameters, reduced heat shock responses to thermal stress, as measured by heat shock protein levels. Furthermore, Hsp70 and 90 are more sensitive to heat shock and starvation, respectively. This may be, in part, a result of the different functioning of the heat shock proteins in cellular stress response and warrants further study.  相似文献   
34.
Epizootic disease caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd) is a major driver of amphibian declines, yet many amphibians declined before the pathogen was described. The Relict Leopard Frog, Rana onca (=Lithobates onca), was nearly extinct, with the exception of populations within a few geothermal springs. Growth of Bd, however, is limited by high water temperature, and geothermal springs may have provided refuge during outbreaks of chytridiomycosis. We conducted field surveys and laboratory experiments to assess the susceptibility of R. onca to Bd. In the field, we found Bd at one of the two areas where remnant populations of R. onca still occur, but not in the other. In the laboratory, we infected juvenile frogs from these two areas with two hypervirulent Bd isolates associated with declines in other ranid species. In our experiments, these Bd isolates did not affect survivorship of R. onca and most infections (64%) were cleared by the end of the experiments. We propose that R. onca either has inherent resistance to Bd or has recently evolved such resistance. These results may be important for conservation efforts aimed at establishing new populations of R. onca across a landscape where Bd exists. Resistance, however, varies among life stages, and we also did not assess Bd from the local environment. We caution that the resistance we observed for young frogs under laboratory conditions may not translate to the situation for R. onca in the wild.  相似文献   
35.
Ray‐finned fishes are notable for having flexible fins that allow for the control of fluid forces. A number of studies have addressed the muscular control, kinematics, and hydrodynamics of flexible fins, but little work has investigated just how flexible ray‐finned fish fin rays are, and how flexibility affects their response to environmental perturbations. Analysis of pectoral fin rays of bluegill sunfish showed that the more proximal portion of the fin ray is unsegmented while the distal 60% of the fin ray is segmented. We examined the range of motion and curvatures of the pectoral fin rays of bluegill sunfish during steady swimming, turning maneuvers, and hovering behaviors and during a vortex perturbation impacting the fin during the fin beat. Under normal swimming conditions, curvatures did not exceed 0.029 mm?1 in the proximal, unsegmented portion of the fin ray and 0.065 mm?1 in the distal, segmented portion of the fin ray. When perturbed by a vortex jet traveling at approximately 1 ms?1 (67 ± 2.3 mN s.e. of force at impact), the fin ray underwent a maximum curvature of 9.38 mm?1. Buckling of the fin ray was constrained to the area of impact and did not disrupt the motion of the pectoral fin during swimming. Flexural stiffness of the fin ray was calculated to be 565 × 10?6 Nm2. In computational fluid dynamic simulations of the fin‐vortex interaction, very flexible fin rays showed a combination of attraction and repulsion to impacting vortex dipoles. Due to their small bending rigidity (or flexural stiffness), impacting vortices transferred little force to the fin ray. Conversely, stiffer fin rays experienced rapid small‐amplitude oscillations from vortex impacts, with large impact forces all along the length of the fin ray. Segmentation is a key design feature of ray‐finned fish fin rays, and may serve as a means of making a flexible fin ray out of a rigid material (bone). This flexibility may offer intrinsic damping of environmental fluid perturbations encountered by swimming fish. J. Morphol. 274:1044–1059, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
36.
37.
In multihost disease systems, differences in mortality between species may reflect variation in host physiology, morphology, and behavior. In systems where the pathogen can persist in the environment, microclimate conditions, and the adaptation of the host to these conditions, may also impact mortality. White‐nose syndrome (WNS) is an emerging disease of hibernating bats caused by an environmentally persistent fungus, Pseudogymnoascus destructans. We assessed the effects of body mass, torpid metabolic rate, evaporative water loss, and hibernaculum temperature and water vapor deficit on predicted overwinter survival of bats infected by P. destructans. We used a hibernation energetics model in an individual‐based model framework to predict the probability of survival of nine bat species at eight sampling sites across North America. The model predicts time until fat exhaustion as a function of species‐specific host characteristics, hibernaculum microclimate, and fungal growth. We fit a linear model to determine relationships with each variable and predicted survival and semipartial correlation coefficients to determine the major drivers in variation in bat survival. We found host body mass and hibernaculum water vapor deficit explained over half of the variation in survival with WNS across species. As previous work on the interplay between host and pathogen physiology and the environment has focused on species with narrow microclimate preferences, our view on this relationship is limited. Our results highlight some key predictors of interspecific survival among western bat species and provide a framework to assess impacts of WNS as the fungus continues to spread into western North America.  相似文献   
38.
Phenylethyl alcohol was one of the first quorum sensing molecules (QSMs) identified in C. albicans. This extracellular signalling molecule inhibits the hyphal formation of C. albicans at high cell density. Little is known, however, about the underlying mechanisms by which this QSM regulates the morphological switches of C. albicans. Therefore, we have applied metabolomics and isotope labelling experiments to investigate the metabolic changes that occur in C. albicans in response to phenylethyl alcohol under defined hyphae-inducing conditions. Our results showed a global upregulation of central carbon metabolism when hyphal development was suppressed by phenylethyl alcohol. By comparing the metabolic changes in response to phenylethyl alcohol to our previous metabolomic studies, we were able to short-list 7 metabolic pathways from central carbon metabolism that appear to be associated with C. albicans morphogenesis. Furthermore, isotope-labelling data showed that phenylethyl alcohol is indeed taken up and catabolised by yeast cells. Isotope-labelled carbon atoms were found in the majority of amino acids as well as in lactate and glyoxylate. However, isotope-labelled carbon atoms from phenylethyl alcohol accumulated mainly in the pyridine ring of NAD+/NADH and NADP−/NADPH molecules, showing that these nucleotides were the main products of phenylethyl alcohol catabolism. Interestingly, two metabolic pathways where these nucleotides play an important role, nitrogen metabolism and nicotinate/nicotinamide metabolism, were also short-listed through our previous metabolomics works as metabolic pathways likely to be closely associated with C. albicans morphogenesis.  相似文献   
39.

Background

Long Lasting Insecticidal Nets (LLIN) and Indoor Residual Spraying (IRS) have both proven to be effective malaria vector control strategies in Africa and the new technology of insecticide treated durable wall lining (DL) is being evaluated. Sustaining these interventions at high coverage levels is logistically challenging and, furthermore, the increase in insecticide resistance in African malaria vectors may reduce the efficacy of these chemical based interventions. Monitoring of vector populations and evaluation of the efficacy of insecticide based control approaches should be integral components of malaria control programmes. This study reports on entomological survey conducted in 2011 in Bomi County, Liberia.

Methods

Anopheles gambiae larvae were collected from four sites in Bomi, Liberia, and reared in a field insectary. Two to five days old female adult An gambiae s.l. were tested using WHO tube (n = 2027) and cone (n = 580) bioassays in houses treated with DL or IRS. A sample of mosquitoes (n = 169) were identified to species/molecular form and screened for the presence of knock down resistance (kdr) alleles associated with pyrethroid resistance.

Results

Anopheles gambiae s.l tested were resistant to deltamethrin but fully susceptible to bendiocarb and fenithrothion. The corrected mortality of local mosquitoes exposed to houses treated with deltamethrin either via IRS or DL was 12% and 59% respectively, suggesting that resistance may affect the efficacy of these interventions. The presence of pyrethroid resistance was associated with a high frequency of the 1014F kdr allele (90.5%) although this mutation alone cannot explain the resistance levels observed.

Conclusion

High prevalence of resistance to deltamethrin in Bomi County may reduce the efficacy of malaria strategies relying on this class of insecticide. The findings highlight the urgent need to expand and sustain monitoring of insecticide resistance in Liberian malaria vectors, evaluate the effectiveness of existing interventions and develop appropriate resistance management strategies.  相似文献   
40.
A cattle exposure trial was carried out in an experimental cattle farm located in Galim near Ngaoundere. Observations were made from October–November 2016 and January 2017. Exposure commenced in the morning (8 h) and ended in the night (20h). The observed number of the different boophilic insect-groups was: Stomoxys (17,453), culicids (8925), Simulium (293), Chrysops (74) and Tabanus (34). Stomoxys (921.35) recorded the highest overall observed daily landing rate (ODLR) during the first survey-round (October–November 2016) and 740.85 during the second survey-round (January 2017) as compared to other hematophagous insect-groups observed. The preferred landing spots for most of the hematophagous insects were legs and belly regions, but Tabanus were also frequent around the head region. Brown colored cattle attracted Simulium, Chrysops, culicids and Stomoxys, but black animals were preferably attacked by tabanids. Cattle were mostly attacked in the overnight parks though there was no statistically significant difference (P?0.05). Two observed daily landing peaks (8 h–10 h and 16 h–18 h) were noticed for all biting fly-groups and was influenced by weather variables. The most frequent physical defense actions against landing flies by cattle was tail flicking. Such actions differed with survey-period, micro-ecosystems and color coat of cattle. Diurnal physical defense mechanism rhythms of cattle showed that head shaking was mostly used between 10 h–12 h and 16 h–18 h, but tail flicking and foot stamping only occurred between 13 h–15 h. There was a strong positive and significant correlation (r = 0.243, P < .001) in defense reactions and fly counts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号