首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   316篇
  免费   17篇
  国内免费   1篇
  2022年   1篇
  2021年   9篇
  2020年   5篇
  2019年   2篇
  2018年   4篇
  2017年   2篇
  2016年   13篇
  2015年   12篇
  2014年   12篇
  2013年   15篇
  2012年   24篇
  2011年   20篇
  2010年   19篇
  2009年   9篇
  2008年   12篇
  2007年   15篇
  2006年   24篇
  2005年   10篇
  2004年   14篇
  2003年   7篇
  2002年   11篇
  2001年   5篇
  2000年   11篇
  1999年   8篇
  1997年   2篇
  1996年   2篇
  1994年   5篇
  1993年   4篇
  1992年   4篇
  1991年   4篇
  1990年   9篇
  1989年   6篇
  1988年   1篇
  1986年   1篇
  1985年   4篇
  1984年   6篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1968年   2篇
  1966年   1篇
  1941年   1篇
排序方式: 共有334条查询结果,搜索用时 15 毫秒
151.
The F plasmid TraI protein (DNA helicase I) plays an essential role in conjugative DNA transfer as both a transesterase and a helicase. Previous work has shown that the 192-kDa TraI protein is a highly processive helicase, catalytically separating >850 bp under steady-state conditions. In this report, we examine the kinetic mechanism describing DNA unwinding of TraI. The kinetic step size of TraI was measured under both single turnover and pre-steady-state conditions. The resulting kinetic step-size estimate was approximately 6-8 bp step(-1). TraI can separate double-stranded DNA at a rate of approximately 1100 bp s(-1), similar to the measured unwinding rate of the RecBCD helicase, and appears to dissociate very slowly from the 3' terminus following translocation and strand-separation events. Analyses of pre-steady-state burst amplitudes indicate that TraI can function as a monomer, similar to the bacteriophage T4 helicase, Dda. However, unlike Dda, TraI is a highly processive monomeric helicase, making it unique among the DNA helicases characterized thus far.  相似文献   
152.
Cytotoxic CD8+ cells play an important role in determining host response to tumor, thus chemotherapy is potentially dangerous as it may lead to T cells depletion. The purpose of this study was to elucidate the propensity of quiescent and proliferating human CD8+ cells to undergo cell death upon treatment with curcumin, a natural dye in Phase I of clinical trials as a prospective chemopreventive agent. Methods: We treated human quiescent or proliferating CD8+ cells with 50 microM curcumin or irradiated them with UVC. Cell death symptoms such as decreased cell viability, chromatin condensation, activation of caspase-3 and specific DFF40/CAD endonuclease and oligonucleosomal DNA fragmentation were analyzed using MTT test, microscopic observation, Western blotting and flow cytometry. Results: Curcumin decreased cell viability, activated caspase-3 and decreased the level of DFF45/ICAD, the inhibitor of the DFF40/CAD endonuclease. However, this did not lead to oligonucleosomal DNA degradation. In contrast, UVC-irradiated proliferating, but not quiescent CD8+ cells revealed molecular and morphological changes characteristic for apoptosis, including oligonucleosomal DNA fragmentation. Curcumin can induce cell death in normal human lymphocytes both quiescent and proliferating, without oligonucleosomal DNA degradation which is considered as a main hallmark of apoptotic cell death. Taking into account the role of CD8+ cells in tumor response, their depletion during chemotherapy could be particularly undesirable.  相似文献   
153.
Exposure of HL-60 cells to 1,25-dihydroxyvitamin D(3) (calcitriol) induces their differentiation into monocytes. This terminal differentiation is associated with acquired resistance to many proapoptotic stimuli. Here we show that differentiated HL-60 cells undergo apoptosis upon curcumin treatment although they retain resistance to apoptosis induced by a topoisomerase poison - etoposide. Curcumin induced changes of nuclear morphology, DNA fragmentation, release of cytochrome c as well as caspase activation in both differentiated and undifferentiated cells. Experiments performed in other laboratories suggested that curcumin initiates apoptosis by DNA damage that results from topoisomerase II poisoning. We measured gammaH2AX expression, a marker of DNA double strand breaks, in both undifferentiated and differentiated HL-60 cells treated with curcumin or etoposide. In etoposide-treated undifferentiated cells early gammaH2AX expression correlated with initiation phase of apoptosis. In contrast, in curcumin-treated cells gammaH2AX expression correlated with apoptotic DNA fragmentation, which is characteristic for the execution phase of apoptosis. Our experiments show that curcumin overcomes the resistance of calcitriol-differentiated HL-60 cells to DNA-damage-induced apoptosis by activating other cell signaling pathways leading to cell death of HL-60.  相似文献   
154.
The definitive diagnosis of the CJD (Creutzfeldt-Jakob disease; very rare neurodegenerative disorder) can be established only on the basis of post-mortem examination of the central nervous system tissue. Formaldehyde-fixed paraffin-embedded (FFPE) tissue samples may thus constitute the only material available for molecular pathology analyses. We performed post-mortem analysis of the coding region of the prion-protein gene (PRNP)-sequence variations in two definite CJD cases suggestive of genetic form. Only FFPE tissues were available for molecular analyses. The PRNP gene open reading frame was amplified from the genomic DNA (FFPE isolated) in four overlapping, two round semi-nested PCR products that were directly sequenced. We found known pathogenic sequence variation g.532 G>A (Asp178Asn) in patient 1 but we did not find any pathogenic sequence variation in patient 2 despite her origin from the Slovak Orava region. Based on these results, we were able to discriminate between genetic and sporadic form of CJD in patient 1 and 2, respectively. The established method was found to be efficient for the sequence-variation analysis of the entire PRNP gene coding region using the genomic DNA isolated from the FFPE tissues; it can be employed in other retrospective molecular studies.  相似文献   
155.
The Mn complex of photosystem II (PSII) cycles through 4 semi-stable states (S0 to S3). Laser-flash excitation of PSII in the S2 or S3 state induces processes with time constants around 350 ns, which have been assigned previously to energetic relaxation of the oxidized tyrosine (YZox). Herein we report monitoring of these processes in the time domain of hundreds of nanoseconds by photoacoustic (or ‘optoacoustic’) experiments involving pressure-wave detection after excitation of PSII membrane particles by ns-laser flashes. We find that specifically for excitation of PSII in the S2 state, nuclear rearrangements are induced which amount to a contraction of PSII by at least 30 Å3 (time constant of 350 ns at 25 °C; activation energy of 285 +/? 50 meV). In the S3 state, the 350-ns-contraction is about 5 times smaller whereas in S0 and S1, no volume changes are detectable in this time domain. It is proposed that the classical S2 = > S3 transition of the Mn complex is a multi-step process. The first step after YZox formation involves a fast nuclear rearrangement of the Mn complex and its protein–water environment (~ 350 ns), which may serve a dual role: (1) The Mn‐ complex entity is prepared for the subsequent proton removal and electron transfer by formation of an intermediate state of specific (but still unknown) atomic structure. (2) Formation of the structural intermediate is associated (necessarily) with energetic relaxation and thus stabilization of YZox so that energy losses by charge recombination with the QA? anion radical are minimized. The intermediate formed within about 350 ns after YZox formation in the S2-state is discussed in the context of two recent models of the S2 = > S3 transition of the water oxidation cycle. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: From Natural to Artificial.  相似文献   
156.
The Mn complex of photosystem II (PSII) cycles through 4 semi-stable states (S(0) to S(3)). Laser-flash excitation of PSII in the S(2) or S(3) state induces processes with time constants around 350ns, which have been assigned previously to energetic relaxation of the oxidized tyrosine (Y(Z)(ox)). Herein we report monitoring of these processes in the time domain of hundreds of nanoseconds by photoacoustic (or 'optoacoustic') experiments involving pressure-wave detection after excitation of PSII membrane particles by ns-laser flashes. We find that specifically for excitation of PSII in the S(2) state, nuclear rearrangements are induced which amount to a contraction of PSII by at least 30?(3) (time constant of 350ns at 25°C; activation energy of 285+/-50meV). In the S(3) state, the 350-ns-contraction is about 5 times smaller whereas in S(0) and S(1), no volume changes are detectable in this time domain. It is proposed that the classical S(2)=>S(3) transition of the Mn complex is a multi-step process. The first step after Y(Z)(ox) formation involves a fast nuclear rearrangement of the Mn complex and its protein-water environment (~350ns), which may serve a dual role: (1) The Mn- complex entity is prepared for the subsequent proton removal and electron transfer by formation of an intermediate state of specific (but still unknown) atomic structure. (2) Formation of the structural intermediate is associated (necessarily) with energetic relaxation and thus stabilization of Y(Z)(ox) so that energy losses by charge recombination with the Q(A)(-) anion radical are minimized. The intermediate formed within about 350ns after Y(Z)(ox) formation in the S(2)-state is discussed in the context of two recent models of the S(2)=>S(3) transition of the water oxidation cycle. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: From Natural to Artificial.  相似文献   
157.
Human acid α-glucosidase (GAA, EC 3.2.1.20) is a lysosomal enzyme that belongs to the glycoside hydrolase family 31 (GH31) and catalyses the hydrolysis of α-1,4- and α-1,6-glucosidic linkages at acid pH. Hereditary deficiency of GAA results in lysosomal glycogen storage disease type II (GSDII, Pompe disease). The aim of this study was to assess GH31 proteins in Caenorhabditis elegans (C. elegans) to identify the ortholog of human GAA. Bioinformatic searches for GAA ortholog in C. elegans genome revealed four acid alpha-glucosidase-related (aagr-14) genes. Multiple sequence alignment of AAGRs with other GH31 proteins demonstrated their evolutionary conservation. Phylogenetic analyses suggested clustering of AAGR-1 and -2 with acid-active and AAGR-3 and -4 with neutral-active GH31 enzymes. In order to prove the AAGRs’ predicted α-glucosidase activity, we performed RNA interference of all four aagr genes. The impact on the α-glucosidase activity was evaluated at pH 4.0 (acid) and pH 6.5 (neutral), with or without the inhibitor acarbose. AAGR-1 and -2 expressed acidic α-glucosidase activity; on the contrary, AAGR-3 not -4 represented the predominant neutral α-glucosidase activity in C. elegans. Similar results were obtained in each of aagr-1 and -4 deletion mutants. Moreover, based on our structural models of AAGRs and these biochemical experiments, we hypothesize that the enzymatic sensitivity of AAGR-2 and human maltase-glucoamylase to the inhibitor acarbose is associated with a tyrosine residue in the GH31 active site, whereas acarbose resistance of AAGR-1 and human GAA is associated with the corresponding tryptophane in the active site. Acid-active AAGR-1 may thus represent the ortholog of human GAA in C. elegans.  相似文献   
158.
Biological Trace Element Research - The study was primarily aimed at investigating the effect of brassica sprout consumption, namely rutabaga (Brassica napus L. var. napobrassica) sprouts (R)...  相似文献   
159.
Molecular Biology Reports - Rheumatoid arthritis (RA) is one of the most common autoimmune diseases globally, and is an important public health concern, associating with early death and systemic...  相似文献   
160.
Aniridia is a rare, bilateral, congenital ocular disorder causing incomplete formation of the iris, usually characterized by iris aplasia/hypoplasia. It can also appear with other ocular anomalies, such as cataracts, glaucoma, corneal pannus, optic nerve hypoplasia, macular hypoplasia, or ectopia lentis. In the majority of cases, it is caused by mutation in the PAX6 gene, but it can also be caused by microdeletions that involve the 11p13 region. Twelve unrelated patients of Polish origin with a clinical diagnosis of aniridia were screened for the presence of microdeletions in the 11p13 region by means of multiplex ligation probe amplification (MLPA). Additionally, the coding regions of the PAX6 gene were sequenced in all probands. MLPA examination revealed different size deletions of the 11p13 region in five patients. In three cases, deletions encompassed the entire PAX6 gene and a few adjacent genes. In one case, a fragment of the PAX6 gene was deleted only. In the final case, the deletion did not include any PAX6 sequence. Our molecular findings provide further evidence of the existence of the distant 3′ regulatory elements in the downstream region of the PAX6 gene, which is known from other studies to influence the level of protein expression. Sequence analysis of the PAX6 gene revealed the three different point mutations in the remaining four patients with aniridia. All the detected mutations were reported earlier. Based on accomplished results, the great diversity of the molecular basis of aniridia was found. It varies from point mutations to different size deletions in the 11p13 region which encompass partly or completely the PAX6 gene or cause a position effect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号