首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   10篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   6篇
  2016年   5篇
  2015年   4篇
  2014年   9篇
  2013年   11篇
  2012年   10篇
  2011年   5篇
  2010年   8篇
  2009年   6篇
  2008年   7篇
  2007年   12篇
  2006年   8篇
  2005年   8篇
  2004年   7篇
  2003年   3篇
  2002年   3篇
  2001年   4篇
  2000年   4篇
  1999年   2篇
  1998年   10篇
  1997年   1篇
  1996年   4篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   4篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1981年   5篇
  1980年   1篇
  1968年   1篇
  1945年   1篇
排序方式: 共有172条查询结果,搜索用时 15 毫秒
161.
Controversy regarding potential health risks from increased use of medical diagnostic radiologic examinations has come to public attention. We evaluated whether chromosome damage, specifically translocations, which are a potentially intermediate biomarker for cancer risk, was increased after exposure to diagnostic X-rays, with particular interest in the ionizing radiation dose–response below the level of approximately 50 mGy. Chromosome translocation frequency data from three separately conducted occupational studies of ionizing radiation were pooled together. Studies 1 and 2 included 79 and 150 medical radiologic technologists, respectively, and study 3 included 83 airline pilots and 50 university faculty members (total = 155 women and 207 men; mean age = 62 years, range 34–90). Information on personal history of radiographic examinations was collected from a detailed questionnaire. We computed a cumulative red bone marrow (RBM) dose score based on the numbers and types of X-ray examinations reported with 1 unit approximating 1 mGy. Poisson regression analyses were adjusted for age and laboratory method. Mean RBM dose scores were 49, 42, and 11 for Studies 1–3, respectively (overall mean = 33.5, range 0–303). Translocation frequencies significantly increased with increasing dose score (P < 0.001). Restricting the analysis to the lowest dose scores of under 50 did not materially change these results. We conclude that chromosome damage is associated with low levels of radiation exposure from diagnostic X-ray examinations, including dose scores of approximately 50 and lower, suggesting the possibility of long-term adverse health effects.  相似文献   
162.
Benzene, toluene, ethylbenzene, and xylene are collectively known as BTEX which contributes to volatile environmental contaminants. This present study investigates the microbial degradation of BTEX in batch and continuous soil column experiments and its effects on soil matric potential. Batch degradation experiments were performed with different initial concentrations of BTEX using the BTEX tolerant culture isolated from petroleum-contaminated soil. In batch study, the degradation pattern for single substrate showed that xylene was degraded much faster than other compounds followed by ethylbenzene, toluene, and benzene with the highest μmax = 0.140 h?1 during initial substrate concentration of 100 mg L?1. Continuous degradation experiments were performed in a soil column with an inlet concentration of BTEX of about 2000 mg L?1 under unsaturated flow in anaerobic condition. BTEX degradation pattern was studied with time and the matric potential of the soil at different parts along the length of the column were determined at the end of the experiment. In continuous degradation study, BTEX compounds were degraded with different degradation pattern and an increase in soil matric potential was observed with an increase in depth from top to bottom in the column with applied suction head. It was found that column biodegradation contributed to 69.5% of BTEX reduction and the bacterial growth increased the soil matric potential of about 34% on an average along the column height. Therefore, this study proves that it is significant to consider soil matric potential in modeling fate and transport of BTEX in unsaturated soils.  相似文献   
163.
The disease-associated prion protein (PrP) forms aggregates which vary in structural conformation yet share an identical primary sequence. These variations in PrP conformation are believed to manifest in prion strains exhibiting distinctly different periods of disease incubation as well as regionally specific aggregate deposition within the brain. The anionic luminescent conjugated polythiophene (LCP), polythiophene acetic acid (PTAA) has previously been used to distinguish PrP deposits associated with distinct mouse adapted strains via distinct fluorescence emission profiles from the dye. Here, we employed PTAA and 3 structurally related chemically defined luminescent conjugated oligothiophenes (LCOs) to stain brain tissue sections from mice inoculated with 2 distinct prion strains. Our results showed that in addition to emission spectra, excitation, and fluorescence lifetime imaging microscopy (FLIM) can fruitfully be assessed for optical distinction of PrP deposits associated with distinct prion strains. Our findings support the theory that alterations in LCP/LCO fluorescence are due to distinct conformational restriction of the thiophene backbone upon interaction with PrP aggregates associated with distinct prion strains. We foresee that LCP and LCO staining in combination with multimodal fluorescence microscopy might aid in detecting structural differences among discrete protein aggregates and in linking protein conformational features with disease phenotypes for a variety of neurodegenerative proteinopathies.  相似文献   
164.
Curare action on nicotinic acetylcholine receptors has a number of facets, of which the best known is competitive antagonism. Here we describe the weak agonist action of 10(-5) M curare on the murine skeletal muscle cell line, G8. Although curare induces no depolarization in G8 cells, single-channel recordings reveal short-lived curare-induced currents. A feature of these brief events is the multiplicity of conductance levels (of the four levels with conductances of 48, 37, 14, and 6 pS, none had a lifetime greater than 1.5 ms). Most well-resolved events (about 17% of which are to a subconductance) last less than 0.5 ms, with activation occurring predominantly as isolated events rather than in bursts. Agonism is not, however, a high probability action for curare: calculations based on the frequency of events at half-saturating conditions suggest that curare-induced channel openings occur during less than 1% of acetylcholine receptor-curare binding episodes. The outcome is (a) an agonist action too feeble to perturb the membrane voltage and (b) a powerful competitive antagonist action.  相似文献   
165.
Spike trains from individual antennal olfactory cells of tsetse flies (Glossina spp.) obtained during steady-state conditions (spontaneous as well as during stimulation with 1-octen-3-ol) and dynamic stimulation with repetitive pulses of 1-octen-3-ol were investigated by studying the spike frequency and the temporal structure of the trains. In general, stimulation changes the intensity of the spike activity but leaves the underlying stochastic structure unaffected. This structure turns out to be a renewal process. The only independently varying parameter in this process is the mean interspike interval length, suggesting that olfactory cells of tsetse flies may transmit information via a frequency coding. In spike records with high firing rates, however, the stationary records had significant negative first- order serial correlation coefficients and were non-renewal. Some cells in this study were capable of precisely encoding the onset of the odour pulses at frequencies up to at least 3 Hz. Cells with a rapid return to pre-stimulus activity at the end of stimulation responded more adequately to pulsed stimuli than cells with a long increased spike frequency. While short-firing cells process information via a frequency code, long-firing cells responded with two distinctive phases: a phasic, non-renewal response and a tonic, renewal response which may function as a memory of previous stimulations.   相似文献   
166.
167.
168.
Polymeric scaffolds comprising two size scales of microfibers and submicron fibers can better support three-dimensional (3D) cell growth in tissue engineering, making them an important class of healthcare material. However, a major manufacturing barrier hampers their translation into wider practical use: scalability. Traditional production of two-scale scaffolds by electrospinning is slow and costly. For day-to-day cell cultures, the scaffolds need to be affordable, made in high yield to drive down cost. Combining expertise from academia and industry from the United Kingdom and United States, this study uses a new series of high-yield, low-cost scaffolds made by shear spinning for tissue engineering. The scaffolds comprise interwoven submicron fibers and microfibers throughout as observed under scanning electron microscopy and demonstrate good capability to support cell culturing for tumor modeling. Three model human cancer cell lines (HEK293, A549 and MCF-7) with stable expression of GFP were cultured in the scaffolds and found to exhibit efficient cell attachment and sustained 3D growth and proliferation for 30 days. Cryosection and multiphoton fluorescence microscopy confirmed the formation of compact 3D cell clusters throughout the scaffolds. In addition, comparative growth curves of 2D and 3D cultures show significant cell-type-dependent differences. This work applies high-yield shear-spun scaffolds in mammalian tissue engineering and brings practical, affordable applications of multiscale scaffolds closer to reality. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2750, 2019.  相似文献   
169.
Mutations in centrosome genes deplete neural progenitor cells (NPCs) during brain development, causing microcephaly. While NPC attrition is linked to TP53‐mediated cell death in several microcephaly models, how TP53 is activated remains unclear. In cultured cells, mitotic delays resulting from centrosome loss prevent the growth of unfit daughter cells by activating a pathway involving 53BP1, USP28, and TP53, termed the mitotic surveillance pathway. Whether this pathway is active in the developing brain is unknown. Here, we show that the depletion of centrosome proteins in NPCs prolongs mitosis and increases TP53‐mediated apoptosis. Cell death after a delayed mitosis was rescued by inactivation of the mitotic surveillance pathway. Moreover, 53BP1 or USP28 deletion restored NPC proliferation and brain size without correcting the upstream centrosome defects or extended mitosis. By contrast, microcephaly caused by the loss of the non‐centrosomal protein SMC5 is also TP53‐dependent but is not rescued by loss of 53BP1 or USP28. Thus, we propose that mutations in centrosome genes cause microcephaly by delaying mitosis and pathologically activating the mitotic surveillance pathway in the developing brain.  相似文献   
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号