首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   573篇
  免费   56篇
  629篇
  2022年   5篇
  2021年   3篇
  2019年   11篇
  2018年   3篇
  2016年   13篇
  2015年   15篇
  2014年   26篇
  2013年   24篇
  2012年   29篇
  2011年   29篇
  2010年   18篇
  2009年   19篇
  2008年   31篇
  2007年   31篇
  2006年   19篇
  2005年   28篇
  2004年   15篇
  2003年   24篇
  2002年   14篇
  2001年   20篇
  2000年   14篇
  1999年   16篇
  1998年   9篇
  1997年   5篇
  1996年   9篇
  1995年   8篇
  1994年   4篇
  1993年   8篇
  1992年   14篇
  1991年   17篇
  1990年   13篇
  1989年   11篇
  1988年   8篇
  1987年   11篇
  1986年   11篇
  1985年   6篇
  1984年   4篇
  1983年   9篇
  1982年   6篇
  1981年   7篇
  1980年   5篇
  1979年   3篇
  1977年   4篇
  1976年   6篇
  1975年   7篇
  1969年   3篇
  1968年   4篇
  1955年   3篇
  1954年   2篇
  1952年   2篇
排序方式: 共有629条查询结果,搜索用时 0 毫秒
71.
72.
73.
74.
Correspondenz     
Ohne Zusammenfassung  相似文献   
75.

Background

In non-small cell lung cancer (NSCLC), nodal metastasis is an adverse prognostic factor. Several mediating factors have been implied in the development of nodal metastases and investigated for predictive and prognostic properties in NSCLC. However, study results differ. In this structured review and meta-analysis we explore the published literature on commonly recognized pathways for molecular regulation of lymphatic metastasis in NSCLC.

Methods

A structured PubMed search was conducted for papers reporting on the expression of known markers of lymhangiogenesis in NSCLC patients. Papers of sufficient quality, presenting survival and/or correlation data were included.

Results

High levels of vascular endothelial growth factor C (VEGF-C, HR 1.57 95% CI 1.34–1.84) and high lymphatic vascular density (LVD, HR 1.84 95% CI 1.18–2.87) were significant prognostic markers of poor survival and high expression of VEGF-C, vascular endothelial growth factor receptor 3 (VEGFR3) and LVD was associated with lymph node metastasis in NSCLC.

Conclusion

Lymphangiogenic markers are prognosticators of survival and correlate with lymph node metastasis in NSCLC. Their exact role and clinical implications should be further elucidated.  相似文献   
76.
The mitochondrial amidoxime reducing component mARC is a newly discovered molybdenum enzyme that is presumed to form the catalytical part of a three-component enzyme system, consisting of mARC, heme/cytochrome b5, and NADH/FAD-dependent cytochrome b5 reductase. mARC proteins share a significant degree of homology to the molybdenum cofactor-binding domain of eukaryotic molybdenum cofactor sulfurase proteins, the latter catalyzing the post-translational activation of aldehyde oxidase and xanthine oxidoreductase. The human genome harbors two mARC genes, referred to as hmARC-1/MOSC-1 and hmARC-2/MOSC-2, which are organized in a tandem arrangement on chromosome 1. Recombinant expression of hmARC-1 and hmARC-2 proteins in Escherichia coli reveals that both proteins are monomeric in their active forms, which is in contrast to all other eukaryotic molybdenum enzymes that act as homo- or heterodimers. Both hmARC-1 and hmARC-2 catalyze the N-reduction of a variety of N-hydroxylated substrates such as N-hydroxy-cytosine, albeit with different specificities. Reconstitution of active molybdenum cofactor onto recombinant hmARC-1 and hmARC-2 proteins in the absence of sulfur indicates that mARC proteins do not belong to the xanthine oxidase family of molybdenum enzymes. Moreover, they also appear to be different from the sulfite oxidase family, because no cysteine residue could be identified as a putative ligand of the molybdenum atom. This suggests that the hmARC proteins and sulfurase represent members of a new family of molybdenum enzymes.  相似文献   
77.
78.
79.
The interaction between the physiological electron transfer partners trimethylamine dehydrogenase (TMADH) and electron-transferring flavoprotein (ETF) from Methylophilus methylotrophus has been examined with particular regard to the proposal that the former protein "imprints" a conformational change on the latter. The results indicate that the absorbance change previously attributed to changes in the environment of the FAD of ETF upon binding to TMADH is instead caused by electron transfer from partially reduced, as-isolated TMADH to ETF. Prior treatment of the as-isolated enzyme with the oxidant ferricenium essentially abolishes the observed spectral change. Further, when the semiquinone form of ETF is used instead of the oxidized form, the mirror image of the spectral change seen with as-isolated TMADH and oxidized ETF is observed. This is attributable to a small amount of electron transfer in the reverse of the physiological direction. Kinetic determination of the dissociation constant and limiting rate constant for electron transfer within the complex of (reduced) TMADH with (oxidized) ETF is reconfirmed and discussed in the context of a recently proposed model for the interaction between the two proteins that involves "structural imprinting" of ETF.  相似文献   
80.
The nitric-oxide synthases (NOSs) make nitric oxide and citrulline from l-arginine. How the bound cofactor (6R)-tetrahydrobiopterin (H4B) participates in Arg hydroxylation is a topic of interest. We demonstrated previously that H4B radical formation in the inducible NOS oxygenase domain (iNOSoxy) is kinetically coupled to the disappearance of a heme-dioxy intermediate and to Arg hydroxylation. Here we report single turnover studies that determine and compare the kinetics of these transitions in Arg hydroxylation reactions catalyzed by the oxygenase domains of endothelial and neuronal NOSs (eNOSoxy and nNOSoxy). There was a buildup of a heme-dioxy intermediate in eNOSoxy and nNOSoxy followed by a monophasic transition to ferric enzyme during the reaction. The rate of heme-dioxy decay matched the rates of H4B radical formation and Arg hydroxylation in both enzymes. The rates of H4B radical formation differed such that nNOSoxy (18 s(-1)) > iNOSoxy (11 s(-1)) > eNOSoxy (6 s(-1)), whereas the lifetimes of the resulting H4B radical followed an opposite rank order. 5MeH4B supported a three-fold faster radical formation and greater radical stability relative to H4B in both eNOSoxy and nNOSoxy. Our results indicate the following: (i) the three NOSs share a common mechanism, whereby H4B transfers an electron to the heme-dioxy intermediate. This step enables Arg hydroxylation and is rate-limiting for all subsequent steps in the hydroxylation reaction. (ii) A direct correlation exists between pterin radical stability and the speed of its formation in the three NOSs. (iii) Uncoupled NO synthesis often seen for eNOS at low H4B concentrations may be caused by the slow formation and poor stability of its H4B radical.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号