首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   25篇
  2022年   4篇
  2021年   1篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   4篇
  2014年   5篇
  2013年   11篇
  2012年   16篇
  2011年   13篇
  2010年   15篇
  2009年   8篇
  2008年   15篇
  2007年   11篇
  2006年   15篇
  2005年   8篇
  2004年   18篇
  2003年   17篇
  2002年   5篇
  2001年   3篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   4篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1980年   1篇
  1978年   1篇
  1975年   1篇
  1972年   1篇
  1966年   3篇
排序方式: 共有219条查询结果,搜索用时 15 毫秒
81.
Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with (125)I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases.  相似文献   
82.
Although a signature of increased interferon (IFN-)alpha production is observed in HIV-1 infection, the response of circulating plasmacytoid dendritic cells (PDC) to Toll-like receptor ligand stimulation is substantially impaired. This functional PDC deficit, which we specifically observed in HIV-1 infected individuals with less than 500 CD4+ T cells/µl, is not well understood. We provide evidence that the peripheral IFN-alpha production in HIV-1 infection is actively suppressed by the enhanced interaction of CD40 ligand (CD40L), a member of the tumor necrosis factor family, and its receptor CD40, which are both upregulated upon immune activation. Plasma levels of soluble CD40L were significantly higher in untreated HIV-1 infected individuals (n = 52) than in subjects on long-term antiretroviral therapy (n = 62, p<0.03) and in uninfected control donors (n = 16, p<0.001). Concomitantly, cell-associated CD40L and the expression of the receptor CD40 on the PDC were significantly upregulated in HIV-1 infection (p<0.05). Soluble and cell-associated CD40L inhibited the PDC-derived IFN-alpha production by CpG oligodeoxynucleotides dose-dependently. This suppressive effect was observed at much lower, physiological CD40L concentrations in peripheral blood mononuclear cells (PBMC) of HIV-1 infected individuals compared to controls (p<0.05). The CpG-induced IFN-alpha production in PBMC of HIV-1 infected donors was directly correlated with PDC and CD4+ T cell counts, and inversely correlated with the viral loads (p<0.001). In HIV-1 infected donors with less than 500 CD4+ T cells/µl, the CpG-induced IFN-alpha production was significantly correlated with the percentage of CD40-expressing PDC and the level of CD40 expression on these cells (p<0.05), whereas CD40L plasma levels played a minor role. In addition, low-dose CD40L contributed to the enhanced production of interleukin 6 and 8 in PBMC of HIV-1 infected donors compared to controls. Our data support the conclusion that the chronic immune activation in HIV-1 infection impairs peripheral PDC innate immune responses at least in part via enhanced CD40:CD40L interactions.  相似文献   
83.
84.
Peroxisomes compartmentalize a dynamic suite of biochemical reactions and play a central role in plant metabolism, such as the degradation of hydrogen peroxide,metabolism of fatty acids, photorespiration, and the biosynthesis of plant hormones. Plant peroxisomes have been traditionally classified into three major subtypes, and in-depth mass spectrometry(MS)-based proteomics has been performed to explore the proteome of the two major subtypes present in green leaves and etiolated seedlings. Here, we carried out a comprehensive proteome analysis of peroxisomes from Arabidopsis leaves given a 48-h dark treatment.Our goal was to determine the proteome of the third major subtype of plant peroxisomes from senescent leaves, and further catalog the plant peroxisomal proteome. We identifieda total of 111 peroxisomal proteins and verified the peroxisomal localization for six new proteins with potential roles in fatty acid metabolism and stress response by in vivo targeting analysis. Metabolic pathways compartmentalized in the three major subtypes of peroxisomes were also compared, which revealed a higher number of proteins involved in the detoxification of reactive oxygen species in peroxisomes from senescent leaves. Our study takes an important step towards mapping the ful function of plant peroxisomes.  相似文献   
85.
Several filamentous fungi are ecologically and economically important plant pathogens that infect a broad variety of crops. They cause high annual yield losses and contaminate seeds and fruits with mycotoxins. Not only powerful infection structures and detrimental toxins, but also cell organelles, such as peroxisomes, play important roles in plant infection. In this review, we summarize recent research results that revealed novel peroxisomal functions of filamentous fungi and highlight the importance of peroxisomes for infection of host plants. Central for fungal virulence are two primary metabolic pathways, fatty acid β-oxidation and the glyoxylate cycle, both of which are required to produce energy, acetyl-CoA, and carbohydrates. These are ultimately needed for the synthesis of cell wall polymers and for turgor generation in infection structures. Most novel results stem from different routes of secondary metabolism and demonstrate that peroxisomes produce important precursors and house various enzymes needed for toxin production and melanization of appressoria. All these peroxisomal functions in fungal virulence might represent elegant targets for improved crop protection.  相似文献   
86.
87.
Immunoglobulin light and heavy chains are synthesized in mammalian cells as precursors containing a signal peptide. Processing and assembling result in formation of active antibodies. Chimeric genes have been made containing the coding sequence of the barley -amylase signal peptide which has been fused to cDNAs coding for either the mature light or the mature heavy chain of a monoclonal antibody. A plasmid was constructed linking both chimeric genes under the control of plant active promoters in an expression cassette. This DNA fragment was stably integrated into the genome of Nicotiana tabacum by Agrobacterium tumefaciens mediated gene transfer. Synthesis of light and heavy chains and assembly to antibodies was detected in transgenic tobacco tissue using specific secondary antibodies. By electron microscopic immunogold labeling, the presence of assembled antibody could be detected within the endoplasmic reticulum. Affinity chromatography indicated biological activity of the assembled immunoglobulin produced in plant cells. Unexpectedly, a significant amount of assembled antibodies was found within chloroplasts.  相似文献   
88.
Sigrun Hippe 《Protoplasma》1985,129(1):52-61
Summary The ultrastructure of freeze-substituted haustoria ofErysiphe graminis DC f. sp.hordei Marchal onHordeum vulgare L. cv. Villa is described. Freeze-substitution allows an improved visualization of thein vivo fine structure of haustoria of powdery mildews. The sheath membrane, as well as the profiles of the plasmalemma, nucleus, mitochondria, and vacuoles appear sharp and smoothly contoured. Invaginations are considered real features of the sheath membrane. Large vacuoles extending into the haustorial body and the haustorial lobes characterize older fungal structures. In the cytoplasm polyribosomes are homogeneously distributed whereas electron-dense glycogen-like inclusions are observed in the periphery of the cytoplasm. The rough endoplasmatic reticulum and the microtubules, primarily orientated with the longitudinal axis of the haustorium, are well resolved by means of the freeze-substitution technique. The method presented provides more detailed insight into the host-parasite interface under natural conditions.  相似文献   
89.
90.
Janus kinases (Jaks) play an essential role in cytokine signaling and have been reported to regulate plasma membrane expression of their cognate receptors. In this study, we examined whether Jak3 and the common gamma chain (gamma(c)) reciprocally regulate their plasma membrane expression. In contrast to interleukin-2Ralpha, gamma(c) localized poorly to the plasma membrane and accumulated in endosomal-lysosomal compartments. However, gamma(c) was expressed at comparable levels on the surface of cells lacking Jak3, and plasma membrane turnover of gamma(c) was independent of Jak3. Nonetheless, overexpression of Jak3 enhanced accumulation of gamma(c) at the plasma membrane. Without gamma(c), Jak3 localized in the cytosol, whereas in the presence of the receptor, it colocalized with gamma(c) in endosomes and at the plasma membrane. Although the Jak FERM domain is necessary and sufficient for receptor binding, the requirement for full-length Jak3 in gamma(c) membrane trafficking was remarkably stringent; using truncation and deletion mutants, we showed that the entire Jak3 molecule was required, although kinase activity was not. Thus, unlike other cytokine receptors, gamma(c) does not require Jak3 for receptor membrane expression. However, full-length Jak3 is required for normal trafficking of this cytokine receptor/Jak pair, a finding that has important structural and clinical implications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号