首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270篇
  免费   37篇
  307篇
  2022年   3篇
  2021年   1篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   5篇
  2015年   5篇
  2014年   5篇
  2013年   12篇
  2012年   22篇
  2011年   17篇
  2010年   15篇
  2009年   8篇
  2008年   19篇
  2007年   13篇
  2006年   17篇
  2005年   11篇
  2004年   19篇
  2003年   16篇
  2002年   7篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1998年   7篇
  1997年   3篇
  1996年   6篇
  1995年   2篇
  1994年   2篇
  1993年   5篇
  1992年   8篇
  1991年   5篇
  1990年   7篇
  1989年   7篇
  1988年   6篇
  1987年   2篇
  1986年   4篇
  1985年   5篇
  1984年   2篇
  1983年   5篇
  1982年   3篇
  1981年   6篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1972年   1篇
  1966年   3篇
  1960年   1篇
  1958年   1篇
排序方式: 共有307条查询结果,搜索用时 0 毫秒
91.
Pentose metabolism in Zymomonas mobilis wild-type and recombinant strains   总被引:4,自引:0,他引:4  
The enzyme activities of the pentose phosphate pathway in the ethanologenic, Gram-negative bacterium Zymomonas mobilis were studied in order to construct a xylose catabolic pathway. In cell-free extracts of wild-type Z. mobilis CP4, activities of the enzymes transketolase (TKT) [2 munits (U)/mg], phosphoribose epimerase (640 mU/mg), phosphoribose isomerase (1600 mU/mg) and 6-phosphogluconate dehydrogenase (2 mU/mg) were determined. However, no transaldolase activity could be detected. Recombinant strains of Z. mobilis were constructed that carried the xylAB genes of the xylose catabolic pathway from Klebsiella pneumoniae. Expression of xylose isomerase (XI, 150 mU/mg) and xylulokinase (XK) (1300 mU/mg) were found in recombinant strains but no growth on pentose as sole carbon source occurred. The xyl-recombinant cells were moreover growth-inhibited in the presence of xylose and were found to accumulate xylitol phosphate due to the subsequent action of a novel enzyme, an NADPH-dependent aldose reductase, and a side reaction of XK on xylitol. From the xylAB recombinant strains, mutants were isolated that were less inhibited and formed less xylitol phosphate when grown in the presence of xylose. The tkt gene of E. coli was cloned on the xylAB plasmid and introduced into Z. mobilis strains. This led to higher TKT activities (150 mU/mg) and, in cooperation with the enzymes XI and XK, mediated a conversion of small amounts of xylose to CO2 and ethanol. However, no growth on xylose as sole carbon source was detected, instead sedoheptulose 7-P accumulated intracellularly. Correspondence to: G. Sprenger  相似文献   
92.
The synthesis of glycerate by isolated intact spinach (Spinacia oleracea L.) leaf peroxisomes upon the addition of glycolate, serine, and glutamate, with either NADH or malate as reductant, has been measured. Measurement of the concentration dependence of NADH-and malate-dependent glycerate synthesis, and the exclusion of various artefacts, clearly demonstrate that under in vivo conditions the transfer of reducing equivalents into the peroxisomes required for the reduction of hydroxypyruvate to glycerate, occurs exclusively via a malate shuttle. The results indicate that a direct uptake of NADH into the peroxisomes does not occur under invivo conditions to any appreciable extent. As these results have been observed with intact as well as with osmotically shocked peroxisomes, it is concluded that the specificity of redox transfer into the peroxisomes is not due to a selectivity of the peroxisomal boundary membrane, but to a multi-enzyme structure of the peroxisomal matrix.Abbreviations GDH glycerophosphate dehydrogenase - GOT glutamate oxaloacetate transaminase - HPR hydroxy-pyruvate reductase - MDH malate dehydrogenase The authors are indebted to Mr. Bernd Raufeisen for the art work. This work was supported by the Deutsche Forschungsgemeinschaft.  相似文献   
93.
In this study the interplay of mitochondria and peroxisomes in photorespiration was simulated in a reconstituted system of isolated mitochondria and peroxisomes from spinach (Spinacia oleracea L.) leaves. The mitochondria oxidizing glycine produced serine, which was reduced in the peroxisomes to glycerate. The required reducing equivalents were provided by the mitochondria via the malate-oxaloacetate (OAA) shuttle, in which OAA was reduced in the mitochondrial matrix by NADH generated during glycine oxidation. The rate of peroxisomal glycerate formation, as compared with peroxisomal protein, resembled the corresponding rate required during leaf photosynthesis under ambient conditions. When the reconstituted system produced glycerate at this rate, the malate-to-OAA ratio was in equilibrium with a ratio of NADH/NAD of 8.8 × 10−3. This low ratio is in the same range as the ratio of NADH/NAD in the cytosol of mesophyll cells of intact illuminated spinach leaves, as we had estimated earlier. This result demonstrates that in the photorespiratory cycle a transfer of redox equivalents from the mitochondria to peroxisomes, as postulated from separate experiments with isolated mitochondria and peroxisomes, can indeed operate under conditions of the very low reductive state of the NADH/NAD system prevailing in the cytosol of mesophyll cells in a leaf during photosynthesis.  相似文献   
94.
Although hydrogen peroxide (H2O2) is a well-described reactive oxygen species that is known for its cytotoxic effects and associated tissue injury, H2O2 has recently been established as an important signaling molecule. We previously demonstrated that lysozyme (Lzm-S), a mediator of sepsis that is released from leukocytes, could produce vasodilation in a phenylephrine-constricted carotid artery preparation by H2O2 signaling. We found that Lzm-S could intrinsically generate H2O2 and that this generation activated H2O2-dependent pathways. In the present study, we used this carotid artery preparation as a bioassay to define those antioxidants that could inhibit Lzm-S's vasodilatory effect. We then determined whether this antioxidant could reverse the hypotension that developed in an Escherichia coli bacteremic model. Of the many antioxidants tested, we found that ethyl gallate (EG), a nonflavonoid phenolic compound, was favorable in inhibiting Lzm-S-induced vasodilation. In our E. coli model, we found that EG reversed the hypotension that developed in this model and attenuated end-organ dysfunction. By fluorometric H2O2 assay and electrochemical probe techniques, we showed that EG could scavenge H2O2 and that it could reduce H2O2 production in model systems. These results show that EG, an antioxidant that was found to scavenge H2O2 in vitro, was able to attenuate cardiovascular dysfunction in a canine in vivo preparation. Antioxidants such as EG may be useful in the treatment of hemodynamic deterioration in septic shock.  相似文献   
95.
Protein C inhibitor is a secreted, non-specific serine protease inhibitor with broad protease reactivity. It binds glycosaminoglycans and anionic phospholipids, which can modulate its activity. Anionic phospholipids, such as phosphatidylserine are normally localized to the inner leaflet of the plasma membrane, but are exposed on activated and apoptotic cells and on plasma membrane-derived microparticles. In this report we show by flow cytometry that microparticles derived from cultured cells and activated platelets incorporated protein C inhibitor during membrane blebbing. Moreover, protein C inhibitor is present in/on microparticles circulating in normal human plasma as judged from Western blots, ELISAs, flow cytometry, and mass spectrometry. These plasma microparticles are mainly derived from megakaryocytes. They seem to be saturated with protein C inhibitor, since they do not bind added fluorescence-labeled protein C inhibitor. Heparin partially removed microparticle-bound protein C inhibitor, supporting our assumption that protein C inhibitor is bound via phospholipids. To assess the biological role of microparticle-bound protein C inhibitor we performed protease inhibition assays and co-precipitated putative binding partners on microparticles with anti-protein C inhibitor IgG. As judged from amidolytic assays microparticle-bound protein C inhibitor did not inhibit activated protein C or thrombin, nor did microparticles modulate the activity of exogenous protein C inhibitor. Among the proteins co-precipitating with protein C inhibitor, complement factors, especially complement factor 3, were most striking. Taken together, our data do not support a major role of microparticle-associated protein C inhibitor in coagulation, but rather suggest an interaction with proteins of the complement system present on these phospholipid vesicles.  相似文献   
96.
97.
98.
We previously showed that lysozyme (Lzm-S), derived from leukocytes, caused myocardial depression in canine sepsis by binding to the endocardial endothelium to release nitric oxide (NO). NO then diffuses to adjacent myocytes to activate the cGMP pathway. In a canine right ventricular trabecular (RVT) preparation, Lzm-S also decreased the inotropic response to field stimulation (FSR) during which the sympathetic and parasympathetic nerves were simulated to measure the adrenergic response. In the present study, we determined whether the pathway by which Lzm-S decreased FSR was different from the pathway by which Lzm-S reduced steady-state (SS) contraction. Furthermore, we determined whether the decrease in FSR was due to a decrease in sympathetic stimulation or enhanced parasympathetic signaling. In the RVT preparation, we found that the inhibitory effect of Lzm-S on FSR was prevented by NO synthase (NOS) inhibitors. A cGMP inhibitor also blocked the depressant activity of Lzm-S. However, in contrast to the Lzm-S-induced decline in SS contraction, chemical removal of the endocardial endothelium by Triton X-100 to eliminate endothelial NO release did not prevent the decrease in FSR. An inhibitory G protein was involved in the effect of Lzm-S, since FSR could be restored by treatment with pertussis toxin. Atropine prevented the Lzm-S-induced decline in FSR, whereas beta(1)- and beta(2)-adrenoceptor function was not impaired by Lzm-S. These results indicate that the Lzm-S-induced decrease in FSR results from a nonendothelial release of NO. NO then acts through inhibitory G protein to enhance parasympathetic signaling.  相似文献   
99.
100.
Highly specific and sensitive procedures will be required to evaluate proteomes. Proximity ligation is a recently introduced mechanism for protein analysis. In this technique, the convergence of sets of protein-binding reagents on individual target molecules juxtaposes attached nucleic acid sequences. Through a ligation reaction a DNA reporter sequence is created, which can be amplified. The procedure thus encodes detected proteins as specific nucleic acid sequences in what may be viewed as a reverse translation reaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号