首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   765篇
  免费   61篇
  826篇
  2022年   6篇
  2021年   8篇
  2020年   9篇
  2019年   8篇
  2018年   10篇
  2017年   20篇
  2016年   9篇
  2015年   32篇
  2014年   27篇
  2013年   41篇
  2012年   50篇
  2011年   58篇
  2010年   35篇
  2009年   38篇
  2008年   50篇
  2007年   49篇
  2006年   46篇
  2005年   41篇
  2004年   37篇
  2003年   34篇
  2002年   24篇
  2001年   9篇
  2000年   9篇
  1999年   8篇
  1998年   10篇
  1997年   6篇
  1996年   12篇
  1995年   6篇
  1994年   5篇
  1993年   18篇
  1992年   4篇
  1991年   8篇
  1990年   9篇
  1989年   7篇
  1988年   8篇
  1986年   5篇
  1985年   4篇
  1984年   4篇
  1983年   4篇
  1982年   5篇
  1979年   3篇
  1977年   6篇
  1976年   5篇
  1975年   4篇
  1971年   4篇
  1969年   3篇
  1968年   2篇
  1967年   5篇
  1963年   2篇
  1959年   2篇
排序方式: 共有826条查询结果,搜索用时 0 毫秒
81.
Highly attenuated modified vaccinia virus Ankara (MVA) serves as a candidate vaccine to immunize against infectious diseases and cancer. MVA was randomly obtained by serial growth in cultures of chicken embryo fibroblasts (CEF), resulting in the loss of substantial genomic information including many genes regulating virus-host interactions. The vaccinia virus interferon (IFN) resistance gene E3L is among the few conserved open reading frames encoding viral immune defense proteins. To investigate the relevance of E3L in the MVA life cycle, we generated the deletion mutant MVA-DeltaE3L. Surprisingly, we found that MVA-DeltaE3L had lost the ability to grow in CEF, which is the first finding of a vaccinia virus host range phenotype in this otherwise highly permissive cell culture. Reinsertion of E3L led to the generation of revertant virus MVA-E3rev and rescued productive replication in CEF. Nonproductive infection of CEF with MVA-DeltaE3L allowed viral DNA replication to occur but resulted in an abrupt inhibition of viral protein synthesis at late times. Under these nonpermissive conditions, CEF underwent apoptosis starting as early as 6 h after infection, as shown by DNA fragmentation, Hoechst staining, and caspase activation. Moreover, we detected high levels of active chicken alpha/beta IFN (IFN-alpha/beta) in supernatants of MVA-DeltaE3L-infected CEF, while moderate IFN quantities were found after MVA or MVA-E3rev infection and no IFN activity was present upon infection with wild-type vaccinia viruses. Interestingly, pretreatment of CEF with similar amounts of recombinant chicken IFN-alpha inhibited growth of vaccinia viruses, including MVA. We conclude that efficient propagation of MVA in CEF, the tissue culture system used for production of MVA-based vaccines, essentially requires conserved E3L gene function as an inhibitor of apoptosis and/or IFN induction.  相似文献   
82.
Phage T7 infects male (F-plasmid-carrying) Escherichia coli cells abortively, whereas the closely related phage T3 grows normally. The inability or ability of phage to replicate in male host cells depends on whether the right end of gene 1 (coding for the phage-specific RNA polymerase) consists of T7 or T3 DNA base sequences.  相似文献   
83.
We describe an original, short, and convenient chemical synthesis of enantiopure (S)-4,5-dihydroxy-2,3-pentanedione (DPD), starting from commercial methyl (S)-(-)-2,2-dimethyl-1,3-dioxolane-4-carboxylate. DPD is the precursor of autoinducer (AI)-2, the proposed signal for bacterial interspecies communication. AI-2 is synthesized by many bacterial species in three enzymatic steps. The last step, a LuxS-catalyzed reaction, leads to the formation of DPD, which spontaneously cyclizes into AI-2. AI-2-like activity of the synthesized molecule was ascertained by the Vibrio harveyi bioassay. To further validate the biological activity of synthetic DPD and to explore its potential in studying DPD (AI-2)-mediated signaling, a Salmonella typhimurium luxS mutant was constructed. Expression of the AI-2 regulated lsr operon can be rescued in this luxS mutant by addition of synthetic DPD or genetic complementation. Biofilm formation by S. typhimurium has been reported to be defective in a luxS mutant, and this was confirmed in this study to test DPD for chemical complementation. However, biofilm formation of the luxS mutant cannot be restored by addition of DPD. In contrast, introduction of luxS under control of its own promoter complemented biofilm formation. Further results demonstrated that biofilm formation of the luxS mutant cannot be restored with luxS under control of the strong nptII promoter. This indicates that altering the intrinsic promoter activity of luxS affects Salmonella biofilm formation. Conclusively, we synthesized biologically active DPD. Using this chemical compound in combination with genetic approaches opens new avenues in studying AI-2-mediated signaling.  相似文献   
84.
The steroid hormone aldosterone is important for salt and water homeostasis as well as for pathological tissue modifications in the cardiovascular system and the kidney. The mechanisms of action include a classical genomic pathway, but physiological relevant nongenotropic effects have also been described. Unlike for estrogens or progesterone, the mechanisms for these nongenotropic effects are not well understood, although pharmacological studies suggest a role for the mineralocorticoid receptor (MR). Here we investigated whether the MR contributes to nongenotropic effects. After transfection with human MR, aldosterone induced a rapid and dose-dependent phosphorylation of ERK1/2 and c-Jun NH2-terminal kinase (JNK) 1/2 kinases in Chinese hamster ovary or human embryonic kidney cells, which was reduced by the MR-antagonist spironolactone and involved cSrc kinase as well as the epidermal growth factor receptor. In primary human aortic endothelial cells, similar results were obtained for ERK1/2 and JNK1/2. Inhibition of MAPK kinase (MEK) kinase but not of protein kinase C prevented the rapid action of aldosterone and also reduced aldosterone-induced transactivation, most probably due to impaired nuclear-cytoplasmic shuttling of MR. Cytosolic Ca2+ was increased by aldosterone in mock- and in human MR-transfected cells to the same extend due to Ca2+ influx, whereas dexamethasone had virtually no effect. Spironolactone did not prevent the Ca2+ response. We conclude that some nongenotropic effects of aldosterone are MR dependent and others are MR independent (e.g. Ca2+), indicating a higher degree of complexity of rapid aldosterone signaling. According to this model, we have to distinguish three aldosterone signaling pathways: 1) genomic via MR, 2) nongenotropic via MR, and 3) nongenotropic MR independent.  相似文献   
85.
Glycoside hydrolysis by retaining family 18 chitinases involves a catalytic acid (Glu) which is part of a conserved DXDXE sequence motif that spans strand four of a (betaalpha)8 barrel (TIM barrel) structure. These glycoside hydrolases are unusual in that the positive charge emerging on the anomeric carbon after departure of the leaving group is stabilized by the substrate itself (the N-acetyl group of the distorted -1 sugar), rather than by a carboxylate group on the enzyme. We have studied seven conserved residues in the catalytic center of chitinase B from Serratia marcescens. Putative roles for these residues are proposed on the basis of the observed mutational effects, the pH-dependency of these effects, pKa calculations and available structural information. The results indicate that the pKa of the catalytic acid (Glu144) is 'cycled' during catalysis as a consequence of substrate-binding and release and, possibly, by a back and forth movement of Asp142 between Asp140 and Glu144. Rotation of Asp142 towards Glu144 also contributes to an essential distortion of the N-acetyl group of the -1 sugar. Two other conserved residues (Tyr10 and Ser93) are important because they stabilize the charge on Asp140 while Asp142 points towards Glu144. Asp215, lying opposite Glu144 on the other side of the scissile glycosidic bond, contributes to catalysis by promoting distortion of the -1 sugar and by increasing the pKa of the catalytic acid. The hydroxyl group of Tyr214 makes a major contribution to the positioning of the N-acetyl group of the -1 sugar. Taken together, the results show that catalysis in family 18 chitinases depends on a relatively large number of (partly mobile) residues that interact with each other and the substrate.  相似文献   
86.
Classical activation of macrophages infected with Leishmania species results in expression and activation of inducible NO synthase (iNOS) leading to intracellular parasite killing. Macrophages can contrastingly undergo alternative activation with increased arginase activity, metabolism of arginine along the polyamine pathway, and consequent parasite survival. An active role for parasite-encoded arginase in host microbicidal responses has not previously been documented. To test the hypothesis that parasite-encoded arginase can influence macrophage responses to intracellular Leishmania, a comparative genetic approach featuring arginase-deficient mutants of L. mexicana lacking both alleles of the gene encoding arginase (Deltaarg), as well as wild-type and complemented Deltaarg controls (Deltaarg[pArg]), was implemented. The studies showed: 1) the absence of parasite arginase resulted in a significantly attenuated infection of mice (p<0.05); 2) poorer survival of Deltaarg in mouse macrophages than controls correlated with greater NO generation; 3) the difference between Deltaarg or control intracellular survival was abrogated in iNOS-deficient macrophages, suggesting iNOS activity was responsible for increased Deltaarg killing; 4) consistently, immunohistochemistry showed enhanced nitrotyrosine modifications in tissues of mice infected with Deltaarg compared with control parasites. Furthermore, 5) in the face of decreased parasite survival, lymph node cells draining cutaneous lesions of Deltaarg parasites produced more IFN-gamma and less IL-4 and IL-10 than controls. These data intimate that parasite-encoded arginase of Leishmania mexicana subverts macrophage microbicidal activity by diverting arginine away from iNOS.  相似文献   
87.
Proteins exist as conformational ensembles, exchanging between substates to perform their function. Advances in experimental techniques yield unprecedented access to structural snapshots of their conformational landscape. However, computationally modeling how proteins use collective motions to transition between substates is challenging owing to a rugged landscape and large energy barriers. Here, we present a new, robotics‐inspired motion planning procedure called dCC‐RRT that navigates the rugged landscape between substates by introducing dynamic, interatomic constraints to modulate frustration. The constraints balance non‐native contacts and flexibility, and instantaneously redirect the motion towards sterically favorable conformations. On a test set of eight proteins determined in two conformations separated by, on average, 7.5 Å root mean square deviation (RMSD), our pathways reduced the Cα atom RMSD to the goal conformation by 78%, outperforming peer methods. We then applied dCC‐RRT to examine how collective, small‐scale motions of four side‐chains in the active site of cyclophilin A propagate through the protein. dCC‐RRT uncovered a spatially contiguous network of residues linked by steric interactions and collective motion connecting the active site to a recently proposed, non‐canonical capsid binding site 25 Å away, rationalizing NMR and multi‐temperature crystallography experiments. In all, dCC‐RRT can reveal detailed, all‐atom molecular mechanisms for small and large amplitude motions. Source code and binaries are freely available at https://github.com/ExcitedStates/KGS/ .  相似文献   
88.
Prostate-specific membrane antigen (PSMA) is a transmembrane protein expressed at high levels in prostate cancer and in tumor-associated neovasculature. In this study, we report that PSMA is internalized via a clathrin-dependent endocytic mechanism and that internalization of PSMA is mediated by the five N-terminal amino acids (MWNLL) present in its cytoplasmic tail. Deletion of the cytoplasmic tail abolished PSMA internalization. Mutagenesis of N-terminal amino acid residues at position 2, 3, or 4 to alanine did not affect internalization of PSMA, whereas mutation of amino acid residues 1 or 5 to alanine strongly inhibited internalization. Using a chimeric protein composed of Tac antigen, the alpha-chain of interleukin 2-receptor, fused to the first five amino acids of PSMA (Tac-MWNLL), we found that this sequence is sufficient for PSMA internalization. In addition, inclusion of additional alanines into the MWNLL sequence either in the Tac chimera or the full-length PSMA strongly inhibited internalization. From these results, we suggest that a novel MXXXL motif in the cytoplasmic tail mediates PSMA internalization. We also show that dominant negative micro2 of the adaptor protein (AP)-2 complex strongly inhibits the internalization of PSMA, indicating that AP-2 is involved in the internalization of PSMA mediated by the MXXXL motif.  相似文献   
89.
90.

Background

Obesity has been associated with a more severe disease course in inflammatory bowel disease (IBD) and epidemiological data identified dietary fats but not obesity as risk factors for the development of IBD. Crohn’s disease is one of the two major IBD phenotypes and mostly affects the terminal ileum. Despite recent observations that high fat diets (HFD) impair intestinal barrier functions and drive pathobiont selection relevant for chronic inflammation in the colon, mechanisms of high fat diets in the pathogenesis of Crohn’s disease are not known. The aim of this study was to characterize the effect of HFD on the development of chronic ileal inflammation in a murine model of Crohn’s disease-like ileitis.

Methods

TNFΔARE/WT mice and wildtype C57BL/6 littermates were fed a HFD compared to control diet for different durations. Intestinal pathology and metabolic parameters (glucose tolerance, mesenteric tissue characteristics) were assessed. Intestinal barrier integrity was characterized at different levels including polyethylene glycol (PEG) translocation, endotoxin in portal vein plasma and cellular markers of barrier function. Inflammatory activation of epithelial cells as well as immune cell infiltration into ileal tissue were determined and related to luminal factors.

Results

HFD aggravated ileal inflammation but did not induce significant overweight or typical metabolic disorders in TNFΔARE/WT. Expression of the tight junction protein Occludin was markedly reduced in the ileal epithelium of HFD mice independently of inflammation, and translocation of endotoxin was increased. Epithelial cells showed enhanced expression of inflammation-related activation markers, along with enhanced luminal factors-driven recruitment of dendritic cells and Th17-biased lymphocyte infiltration into the lamina propria.

Conclusions

HFD feeding, independently of obesity, accelerated disease onset of small intestinal inflammation in Crohn’s disease-relevant mouse model through mechanisms that involve increased intestinal permeability and altered luminal factors, leading to enhanced dendritic cell recruitment and promoted Th17 immune responses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号