首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   911篇
  免费   63篇
  2024年   2篇
  2023年   5篇
  2022年   20篇
  2021年   28篇
  2020年   22篇
  2019年   22篇
  2018年   40篇
  2017年   30篇
  2016年   42篇
  2015年   40篇
  2014年   66篇
  2013年   66篇
  2012年   71篇
  2011年   84篇
  2010年   64篇
  2009年   36篇
  2008年   58篇
  2007年   63篇
  2006年   68篇
  2005年   32篇
  2004年   29篇
  2003年   19篇
  2002年   14篇
  2001年   2篇
  2000年   4篇
  1999年   6篇
  1998年   2篇
  1997年   4篇
  1996年   5篇
  1995年   5篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1989年   3篇
  1988年   1篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1973年   2篇
  1966年   1篇
  1965年   1篇
排序方式: 共有974条查询结果,搜索用时 15 毫秒
101.
Efficient microwave-assisted Mo(VI)-catalyzed transformations of the 10 most common aldoses are described. Both pentoses and hexoses were converted to the corresponding epimers in considerably shorter reaction times. The yields were comparable, or better compared to conventional synthetic methods.  相似文献   
102.
Evidence showing the existence in the inner compartment of rat-heart mitochondria of AKAP121 and associated PKA is presented. Immunoblotting analysis and trypsin digestion pattern show that 90% or more of mitochondrial C-PKA, R-PKA and AKAP121 is localized in the inner mitochondrial compartment, when prepared both from isolated mitochondria or cardiomyocyte cultures. This localization is verified by measurement of the specific catalytic activity of PKA, radiolabelling of R-PKA by (32)P-phosphorylated C-PKA and of AKAP by (32)P-phosphorylated R-PKA and electron microscopy of mitochondria exposed to gold-conjugated AKAP121 antibody.  相似文献   
103.
In mammals, the principal circadian clock within the suprachiasmatic nucleus (SCN) entrains the phase of clocks in numerous peripheral tissues and controls the rhythmicity in various body functions. During ontogenesis, the molecular mechanism responsible for generating circadian rhythmicity develops gradually from the prenatal to the postnatal period. In the beginning, the maternal signals set the phase of the newly developing fetal and early postnatal clocks, whereas the external light-dark cycle starts to entrain the clocks only later. This minireview discusses the complexity of signaling pathways from mothers and the outside world to the fetal and newborn animals' circadian clocks.  相似文献   
104.

Background  

Retrotransposons are commonly occurring eukaryotic transposable elements (TEs). Among these, long terminal repeat (LTR) retrotransposons are the most abundant TEs and can comprise 50–90% of the genome in higher plants. By comparing the orthologous chromosomal regions of closely related species, the effects of TEs on the evolution of plant genomes can be studied in detail.  相似文献   
105.
Crosstalk between the aryl hydrocarbon receptor (AhR) and transforming growth factor-β1 (TGF-β1) signaling has been observed in various experimental models. However, both molecular mechanism underlying this crosstalk and tissue-specific context of this interaction are still only partially understood. In a model of human non-tumorigenic prostate epithelial cells BPH-1, derived from the benign prostatic hyperplasia, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) persistently activates the AhR signaling pathway and induces expression of xenobiotic metabolizing enzymes, such as CYP1A1 or CYP1B1. Here we demonstrate that TGF-β1 suppresses the AhR-mediated gene expression through multiple mechanisms, involving inhibition of AhR expression and down-regulation of nuclear AhR, via a SMAD4-dependent pathway. In contrast, TCDD-induced AhR signaling does not affect either TGF-β1-regulated gene expression or epithelial-to-mesenchymal transition. These observations suggest that, in the context of prostate epithelium, TGF-β1 signaling plays a dominant role in the crosstalk with AhR signaling pathway. Given the importance of TGF-β1 signaling in regulation of prostate epithelial tissue homeostasis, as well as the recently revealed role of AhR in prostate development and tumorigenesis, the above findings contribute to our understanding of the mechanisms underlying the crosstalk between the two signaling pathways in the prostate-specific context.  相似文献   
106.
The γ-aminobutyric acid type A receptor (GABA(A)R) is a target for general anesthetics of diverse chemical structures, which act as positive allosteric modulators at clinical doses. Previously, in a heterogeneous mixture of GABA(A)Rs purified from bovine brain, [3H]azietomidate photolabeling of αMet-236 and βMet-286 in the αM1 and βM3 transmembrane helices identified an etomidate binding site in the GABA(A)R transmembrane domain at the interface between the β and α subunits [Li, G. D., et.al. (2006) J. Neurosci. 26, 11599-11605]. To further define GABA(A)R etomidate binding sites, we now use [3H]TDBzl-etomidate, an aryl diazirine with broader amino acid side chain reactivity than azietomidate, to photolabel purified human FLAG-α1β3 GABA(A)Rs and more extensively identify photolabeled GABA(A)R amino acids. [3H]TDBzl-etomidate photolabeled in an etomidate-inhibitable manner β3Val-290, in the β3M3 transmembrane helix, as well as α1Met-236 in α1M1, a residue photolabeled by [3H]azietomidate, while no photolabeling of amino acids in the αM2 and βM2 helices that also border the etomidate binding site was detected. The location of these photolabeled amino acids in GABA(A)R homology models derived from the recently determined structures of prokaryote (GLIC) or invertebrate (GluCl) homologues and the results of computational docking studies predict the orientation of [3H]TDBzl-etomidate bound in that site and the other amino acids contributing to this GABA(A)R intersubunit etomidate binding site. Etomidate-inhibitable photolabeling of β3Met-227 in βM1 by [3H]TDBzl-etomidate and [3H]azietomidate also provides evidence of a homologous etomidate binding site at the β3-β3 subunit interface in the α1β3 GABA(A)R.  相似文献   
107.
108.
109.
During the last decade, the application of arbuscular mycorrhizal fungi (AMF) as bioenhancers has increased significantly. However, until now, it has been difficult to verify the inoculation success in terms of fungal symbiont establishment in roots of inoculated plants because specific fungal strains could not be detected within colonized roots. Using mitochondrial large subunit ribosomal DNA, we show that Rhizophagus irregularis (formerly known as Glomus intraradices) isolate BEG140 consists of two different haplotypes. We developed nested PCR assays to specifically trace each of the two haplotypes in the roots of Phalaris arundinacea from a field experiment in a spoil bank of a former coal mine, where BEG140 was used as inoculant. We revealed that despite the relatively high diversity of native R. irregularis strains, R. irregularis BEG140 survived and proliferated successfully in the field experiment and was found significantly more often in the inoculated than control plots. This work is the first one to show tracing of an inoculated AMF isolate in the roots of target plants and to verify its survival and propagation in the field. These results will have implications for basic research on the ecology of AMF at the intraspecific level as well as for commercial users of mycorrhizal inoculation.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号