首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104141篇
  免费   1360篇
  国内免费   1507篇
  2023年   93篇
  2022年   274篇
  2021年   459篇
  2020年   323篇
  2019年   397篇
  2018年   12142篇
  2017年   10907篇
  2016年   7868篇
  2015年   1230篇
  2014年   1126篇
  2013年   1102篇
  2012年   5131篇
  2011年   13667篇
  2010年   12495篇
  2009年   8712篇
  2008年   10390篇
  2007年   11894篇
  2006年   788篇
  2005年   990篇
  2004年   1433篇
  2003年   1419篇
  2002年   1145篇
  2001年   471篇
  2000年   359篇
  1999年   189篇
  1998年   116篇
  1997年   126篇
  1996年   79篇
  1995年   47篇
  1994年   57篇
  1993年   69篇
  1992年   113篇
  1991年   116篇
  1990年   58篇
  1989年   69篇
  1988年   44篇
  1987年   65篇
  1986年   36篇
  1985年   38篇
  1984年   43篇
  1983年   41篇
  1982年   26篇
  1981年   21篇
  1980年   21篇
  1979年   23篇
  1978年   24篇
  1972年   258篇
  1971年   284篇
  1965年   20篇
  1962年   25篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
931.
The genus Fusarium, including multiple strains in the Gibberella fujikuroi species complex (GFC), is well known for its production of diverse secondary metabolites. F. fujikuroi, associated with the “bakanae” disease of rice, is an active producer of gibberellins (GAs), a wide class of plant hormones. In addition to some members of the GFC, the GA biosynthetic gene cluster, or parts of it, occurs also in some isolates of the closely related species of F. oxysporum, which does not belong to the GFC. However, production of GAs has never been observed in any F. oxysporum strain. In this study, we report on the GA biosynthetic activity in an orchid-associated F. oxysporum strain by transforming a cosmid with the entire F. fujikuroi GA gene cluster. Southern and Northern blot analyses confirmed not only the integration of the entire gene cluster into the genome but also the active expression of the seven GA biosynthetic genes under nitrogen-limiting conditions. The transformants produced GAs at levels similar to those of F. fujikuroi. These data show that the regulatory network for expression of GA genes is fully active in the F. oxysporum background.  相似文献   
932.
A preliminary account of Hypoxylon species (Xylariaceae) from the hitherto widely unexplored “Yungas” mountain forests of Northwest Argentina is presented. Two new species are described based on extensive morphological, molecular (ITS region of rDNA, partial β-tubulin gene) and chemotaxonomic data. Hypoxylon spegazzinianum is close to H. erythrostroma, but differs by larger ascospores and a virgariella-like asexual morph. Hypoxylon calileguense resembles H. subgilvum when growing on wood, but can be distinguished by larger ascospores and a fawn to brick stromatal surface colour. Stromata found on bark have affinities to H. pelliculosum, but differ in their stromatal surface colour and conspicuous amyloid apical apparatus. In addition, nine taxa of Hypoxylon are reported for Argentina for the first time, and some details on their asexual state and stromatal secondary metabolites are reported. An updated dichotomous key for Hypoxylon species from Argentina is provided.  相似文献   
933.
934.
935.
936.
This study presents an evaluation of the role that cartilage fibre ‘split line’ orientation plays in informing femoral cartilage stress patterns. A two-stage model is presented consisting of a whole knee joint coupled to a tissue-level cartilage model for computational efficiency. The whole joint model may be easily customised to any MRI or CT geometry using free-form deformation. Three ‘split line’ patterns (medial–lateral, anterior–posterior and random) were implemented in a finite element model with constitutive properties referring to this ‘split line’ orientation as a finite element fibre field. The medial–lateral orientation was similar to anatomy and was derived from imaging studies. Model predictions showed that ‘split lines’ are formed along the line of maximum principal strains and may have a biomechanical role of protecting the cartilage by limiting the cartilage deformation to the area of higher cartilage thickness.  相似文献   
937.
Contractions of uterine smooth muscle cells consist of a chain of physiological processes. These contractions provide the required force to expel the fetus from the uterus. The inclusion of these physiological processes is, therefore, imperative when studying uterine contractions. In this study, an electro-chemo-mechanical model to replicate the excitation, activation, and contraction of uterine smooth muscle cells is developed. The presented modeling strategy enables efficient integration of knowledge about physiological processes at the cellular level to the organ level. The model is implemented in a three-dimensional finite element setting to simulate uterus contraction during labor in response to electrical discharges generated by pacemaker cells and propagated within the myometrium via gap junctions. Important clinical factors, such as uterine electrical activity and intrauterine pressure, are predicted using this simulation. The predictions are in agreement with clinically measured data reported in the literature. A parameter study is also carried out to investigate the impact of physiologically related parameters on the uterine contractility.  相似文献   
938.
Functional adaptation of the femur has been investigated in several studies by embedding bone remodelling algorithms in finite element (FE) models, with simplifications often made to the representation of bone’s material symmetry and mechanical environment. An orthotropic strain-driven adaptation algorithm is proposed in order to predict the femur’s volumetric material property distribution and directionality of its internal structures within a continuum. The algorithm was applied to a FE model of the femur, with muscles, ligaments and joints included explicitly. Multiple load cases representing distinct frames of two activities of daily living (walking and stair climbing) were considered. It is hypothesised that low shear moduli occur in areas of bone that are simply loaded and high shear moduli in areas subjected to complex loading conditions. In addition, it is investigated whether material properties of different femoral regions are stimulated by different activities. The loading and boundary conditions were considered to provide a physiological mechanical environment. The resulting volumetric material property distribution and directionalities agreed with ex vivo imaging data for the whole femur. Regions where non-orthogonal trabecular crossing has been documented coincided with higher values of predicted shear moduli. The topological influence of the different activities modelled was analysed. The influence of stair climbing on the properties of the femoral neck region is highlighted. It is recommended that multiple load cases should be considered when modelling bone adaptation. The orthotropic model of the complete femur is released with this study.  相似文献   
939.
Anatomic aortic anomalies are seen in many medical conditions and are known to cause disturbances in blood flow. Turner syndrome (TS) is a genetic disorder occurring only in females where cardiovascular anomalies, particularly of the aorta, are frequently encountered. In this study, numerical simulations are applied to investigate the flow characteristics in four TS patient- related aortic arches (a normal geometry, dilatation, coarctation and elongation of the transverse aorta). The Quemada viscosity model was applied to account for the non-Newtonian behavior of blood. The blood is treated as a mixture consisting of water and red blood cells (RBC) where the RBCs are modeled as a convected scalar. The results show clear geometry effects where the flow structures and RBC distribution are significantly different between the aortas. Transitional flow is observed as a jet is formed due to a constriction in the descending aorta for the coarctation case. RBC dilution is found to vary between the aortas, influencing the WSS. Moreover, the local variations in RBC volume fraction may induce large viscosity variations, stressing the importance of accounting for the non-Newtonian effects.  相似文献   
940.
Mechanical stresses due to blood flow regulate vascular endothelial cell structure and function and play a key role in arterial physiology and pathology. In particular, the development of atherosclerosis has been shown to correlate with regions of disturbed blood flow where endothelial cells are round and have a randomly organized cytoskeleton. Thus, deciphering the relation between the mechanical environment, cell structure, and cell function is a key step toward understanding the early development of atherosclerosis. Recent experiments have demonstrated very rapid (\(\sim \)100 ms) and long-distance (\(\sim \)10 \(\upmu \)m) cellular mechanotransduction in which prestressed actin stress fibers play a critical role. Here, we develop a model of mechanical signal transmission within a cell by describing strains in a network of prestressed viscoelastic stress fibers following the application of a force to the cell surface. We find force transmission dynamics that are consistent with experimental results. We also show that the extent of stress fiber alignment and the direction of the applied force relative to this alignment are key determinants of the efficiency of mechanical signal transmission. These results are consistent with the link observed experimentally between cytoskeletal organization, mechanical stress, and cellular responsiveness to stress. Based on these results, we suggest that mechanical strain of actin stress fibers under force constitutes a key link in the mechanotransduction chain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号