首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1236篇
  免费   96篇
  国内免费   1篇
  2021年   15篇
  2020年   12篇
  2019年   11篇
  2018年   16篇
  2017年   17篇
  2016年   16篇
  2015年   30篇
  2014年   46篇
  2013年   74篇
  2012年   65篇
  2011年   64篇
  2010年   39篇
  2009年   40篇
  2008年   66篇
  2007年   62篇
  2006年   68篇
  2005年   66篇
  2004年   64篇
  2003年   55篇
  2002年   62篇
  2001年   11篇
  2000年   13篇
  1999年   23篇
  1998年   20篇
  1997年   8篇
  1996年   9篇
  1995年   12篇
  1994年   12篇
  1993年   10篇
  1992年   18篇
  1991年   14篇
  1990年   13篇
  1989年   16篇
  1988年   7篇
  1987年   13篇
  1986年   6篇
  1985年   15篇
  1984年   25篇
  1983年   18篇
  1982年   26篇
  1981年   11篇
  1980年   7篇
  1979年   5篇
  1978年   7篇
  1977年   7篇
  1976年   9篇
  1975年   9篇
  1974年   9篇
  1973年   8篇
  1968年   6篇
排序方式: 共有1333条查询结果,搜索用时 31 毫秒
91.
The western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is a major pest of cultivated corn in North America and has recently begun to invade Europe. In addition to crop rotation, chemical control is an important option for D. v. virgifera management. However, resistance to chemical insecticides has evolved repeatedly in the USA. In Europe, chemical control strategies have yet to be harmonized and no surveys of insecticide resistance have been carried out. We investigated the resistance to methyl‐parathion and aldrin of samples from nine D. v. virgifera field populations originating from two European outbreaks thought to have originated from two independent introductions from North America. Diagnostic concentration bioassays revealed that all nine D. v. virgifera field populations were resistant to aldrin but susceptible to methyl‐parathion. Aldrin resistance was probably introduced independently, at least twice, from North America into Europe, as there is no evident selection pressure to account for an increase of frequency of aldrin resistance in each of the invasive outbreaks in Europe. Our results suggest that organophosphates, such as methyl‐parathion, may still provide effective control of both larval and adult D. v. virgifera in the European invasive outbreaks studied.  相似文献   
92.
93.
In the recent years, short-term heart rate variability (HRV) describing complex variations of beat-to-beat interval series that are mainly controlled by the autonomic nervous system (ANS) has been increasingly analyzed to assess the ANS activity in different diseases and under various conditions. In contrast to long-term HRV analysis, short-term investigations (<30 min) provide a test result almost immediately. Thus, short-term HRV analysis is suitable for ambulatory care, patient monitoring and all those applications where the result is urgently needed. In a previous study, we could show significant variations of 5-min HRV indices according to age in almost all domains (linear and nonlinear) in 1906 healthy subjects from the KORA S4 cohort. Based on the same group of subjects, general gender-related influences on HRV indices are to be determined in this study. Short-term 5-min HRV indices from linear time and frequency domain and from nonlinear methods (compression entropy, detrended fluctuation analysis, traditional and segmented Poincaré plot analysis, irreversibility analysis, symbolic dynamics, correlation and mutual information analysis) were determined from 782 females and 1124 males. First, we examined the gender differences in two age clusters (25–49 years and 50–74 years). Secondly, we investigated the gender-specific development of HRV indices in five age decade categories, namely for ages 25–34, 35–44, 45–54, 55–64 and 65–74 years. In this study, significant modifications of the indices according to gender could be obtained, especially in the frequency domain and correlation analyses. Furthermore, there were significant modifications according to age in nearly all of the domains. The gender differences disappeared within the last two age decades and the age dependencies disappeared in the last decade. To summarize gender and age influences need to be considered when performing HRV studies even if these influences only partly differ.  相似文献   
94.
The Corynebacterium glutamicum gene cg2091 is encoding a polyphosphate (PolyP)/ATP-dependent glucokinase (PPGK). Previous work demonstrated the association of PPGK to PolyP granules. The deduced amino acid sequence of PPGK shows 45% sequence identity to PolyP/ATP glucomannokinase of Arthrobacter sp. strain KM and 50% sequence identity to PolyP glucokinase of Mycobacterium tuberculosis H37Rv. PPGK from C. glutamicum was purified from recombinant Escherichia coli. PolyP was highly preferred over ATP and other NTPs as substrate and with respect to the tested PolyPs differing in chain length; the protein was most active with PolyP75. Gel filtration analysis revealed that PolyP supported the formation of homodimers of PPGK and that PPGK was active as a homodimer. A ppgK deletion mutant (ΔppgK) showed slowed growth in minimal medium with maltose as sole carbon source. Moreover, in minimal medium containing 2 to 4% (w/v) glucose as carbon source, ΔppgK grew to lower final biomass concentrations than the wild type. Under phosphate starvation conditions, growth of ΔppgK was reduced, and growth of a ppgK overexpressing strain was increased as compared to wild type and empty vector control, respectively. Thus, under conditions of glucose excess, the presence of PPGK entailed a growth advantage.  相似文献   
95.
Restoration of plant populations is often undertaken using seed or plants from local sources because it is assumed they will be best adapted to the prevailing conditions. However, the effect of site disturbance on local adaptation has rarely been examined. We assessed local adaptation in three southwestern Australian forest tree species (Eucalyptus marginata, Corymbia calophylla, and Allocasuarina fraseriana) using reciprocal transplant trials at disturbed and undisturbed sites. Performance of plants within the trials was assessed over 2 years. Planting location accounted for the majority of the variation in most measures of performance, although significant variation of percent emergence among source populations was also detected. In all species, percent emergence and survival of plants sourced from Darling Range populations was significantly higher than that of plants from the Swan Coastal Plain, regions of contrasting edaphic and climatic environment. Survival of E. marginata over the first 18 months and emergence of C. calophylla were both higher in local plants, providing at least weak evidence for local adaptation. Where a local advantage was observed, the relative performance of local and nonlocal seed did not vary among disturbed and undisturbed sites. Evidence for enhanced establishment from local seed in at least one species leads us to recommend that where sufficient high‐quality seed supplies exist locally, these should be used in restoration. We also recommend longer‐term studies to include the possibility of local adaptation becoming evident at later life history stages.  相似文献   
96.
Caenorhabditis elegans is a validated model to study bacterial pathogenicity. We report that Yersinia enterocolitica strains W22703 (biovar 2, serovar O:9) and WA314 (biovar 1B, serovar O:8) kill C. elegans when feeding on the pathogens for at least 15 min before transfer to the feeding strain Escherichia coli OP50. The killing by Yersinia enterocolitica requires viable bacteria and, in contrast to that by Yersinia pestis and Yersinia pseudotuberculosis strains, is biofilm independent. The deletion of tcaA encoding an insecticidal toxin resulted in an OP50-like life span of C. elegans, indicating an essential role of TcaA in the nematocidal activity of Y. enterocolitica. TcaA alone is not sufficient for nematocidal activity because E. coli DH5α overexpressing TcaA did not result in a reduced C. elegans life span. Spatial-temporal analysis of C. elegans infected with green fluorescent protein-labeled Y. enterocolitica strains showed that Y. enterocolitica colonizes the nematode intestine, leading to an extreme expansion of the intestinal lumen. By low-dose infection with W22703 or DH5α followed by transfer to E. coli OP50, proliferation of Y. enterocolitica, but not E. coli, in the intestinal lumen of the nematode was observed. The titer of W22703 cells within the worm increased to over 106 per worm 4 days after infection while a significantly lower number of a tcaA knockout mutant was recovered. A strong expression of tcaA was observed during the first 5 days of infection. Y. enterocolitica WA314 (biovar 1B, serovar O:8) mutant strains lacking the yadA, inv, yopE, and irp1 genes known to be important for virulence in mammals were not attenuated or only slightly attenuated in their toxicity toward the nematode, suggesting that these factors do not play a significant role in the colonization and persistence of this pathogen in nematodes. In summary, this study supports the hypothesis that C. elegans is a natural host and nutrient source of Y. enterocolitica.Yersinia enterocolitica belongs to the family of Enterobacteriaceae and is a psychrotolerant human pathogen that causes gastrointestinal syndromes ranging from acute enteritis to mesenteric lymphadenitis (5). It infects a number of mammals, and swine was identified as a major source for human infection (6). A multiphasic life cycle, which comprises a free-living phase and several host-associated phases, including cold-blooded and warm-blooded hosts, appears to be characteristic for biovars 1B and 2 to 5 of Y. enterocolitica (7, 24).Nonmammalian host organisms including Dictyostelium discoideum, Drosophila melanogaster, or Caenorhabditis elegans are increasingly used to study host-pathogen interactions (16, 26). Due to the obvious parallels between the mammalian and invertebrate defense mechanisms, it has been suggested that the bacteria-invertebrate interaction has shaped the evolution of microbial pathogenicity (53). Several human pathogens including Gram-positive and Gram-negative bacteria infect and kill the soil nematode C. elegans when they are supplied as a nutrient source (42). For example, Streptococcus pneumoniae (4), Listeria monocytogenes (50), extraintestinal Escherichia coli (15), and Staphylococcus aureus (43) but not Bacillus subtilis have been shown to kill the nematode. Upon infection of C. elegans with Enterococcus faecalis, Gram-positive virulence-related factors as well as putative antimicrobials have been identified (20, 35). The extensive conservation in virulence mechanisms directed against invertebrates as well as mammals was demonstrated using a screen with Pseudomonas aeruginosa (30). In this study, 10 of 13 genes whose knockout attenuated the nematode killing were also required for full virulence in a mouse model, confirming the suitability of the C. elegans model to study bacterial pathogenicity. C. elegans is also colonized by Salmonella enterica serovar Typhimurium (S. Typhimurium). This process requires Salmonella virulence factors and was used to study the innate immune response of the nematode (1, 2, 49).The effect of pathogenic Yersinia spp. on C. elegans has also been investigated. It could be demonstrated that both Yersinia pestis and Yersinia pseudotuberculosis block food intake by creating a biofilm around the worm''s mouth (13, 27). This biofilm formation requires the hemin storage locus (hms) and has been suggested to be responsible for the blockage of the digestive tract following uptake by fleas, thus acting as a bacterial defense against predation by invertebrates. In a study with 40 Y. pseudotuberculosis strains, one-quarter of them caused an infection of C. elegans by biofilm formation on the worm head (27). In contrast, a similar effect was not observed following nematode infection with 15 Y. enterocolitica strains. Using a Y. pestis strain lacking the hms genes, it could be demonstrated that this mutant can infect and kill the nematode by a biofilm-independent mechanism that includes the accumulation of Y. pestis in the intestine of the worm (47). This pathogenesis model was applied to show that putative virulence factors such as YapH, OmpT, or a metalloprotease, Y3857, but not the virulence plasmids pCD1 and pPCP1, are required for Y. pestis virulence in C. elegans. Six yet unknown genes required for full virulence in C. elegans were also identified, and one of them appeared to be a virulence factor in the mouse infection model.C. elegans has not been used to study the pathogenicity properties of Y. enterocolitica, mainly due to the fact that many of its virulence factors are upregulated at 37°C in comparison to growth at lower temperatures while C. elegans cannot be cultivated at temperatures above 25°C. In this study, we examined for the first time the infection of C. elegans by Y. enterocolitica strains, demonstrating that this pathogen colonizes and kills C. elegans and that the insecticidal toxin TcaA, which is expressed only at ambient temperature, is required for full nematocidal activity.  相似文献   
97.
Aerobic ammonium-oxidizing bacteria (AerAOB) and anoxic ammonium-oxidizing bacteria (AnAOB) cooperate in partial nitritation/anammox systems to remove ammonium from wastewater. In this process, large granular microbial aggregates enhance the performance, but little is known about granulation so far. In this study, three suspended-growth oxygen-limited autotrophic nitrification-denitrification (OLAND) reactors with different inoculation and operation (mixing and aeration) conditions, designated reactors A, B, and C, were used. The test objectives were (i) to quantify the AerAOB and AnAOB abundance and the activity balance for the different aggregate sizes and (ii) to relate aggregate morphology, size distribution, and architecture putatively to the inoculation and operation of the three reactors. A nitrite accumulation rate ratio (NARR) was defined as the net aerobic nitrite production rate divided by the anoxic nitrite consumption rate. The smallest reactor A, B, and C aggregates were nitrite sources (NARR, >1.7). Large reactor A and C aggregates were granules capable of autonomous nitrogen removal (NARR, 0.6 to 1.1) with internal AnAOB zones surrounded by an AerAOB rim. Around 50% of the autotrophic space in these granules consisted of AerAOB- and AnAOB-specific extracellular polymeric substances. Large reactor B aggregates were thin film-like nitrite sinks (NARR, <0.5) in which AnAOB were not shielded by an AerAOB layer. Voids and channels occupied 13 to 17% of the anoxic zone of AnAOB-rich aggregates (reactors B and C). The hypothesized granulation pathways include granule replication by division and budding and are driven by growth and/or decay based on species-specific physiology and by hydrodynamic shear and mixing.In the last few years, autotrophic nitrogen removal via partial nitritation and anoxic ammonium oxidation (anammox) has evolved from lab- to full-scale treatment of nitrogenous wastewaters with a low biodegradable organic compound content, and this evolution has been driven mainly by a significant decrease in the operational costs compared to the costs of conventional nitrification and heterotrophic denitrification (11, 23). Oxygen-limited autotrophic nitrification and denitrification (OLAND) is one of the autotrophic processes used and is a one-stage procedure; i.e., partial nitritation and anammox occur in the same reactor (30). The “functional” autotrophic microorganisms in OLAND include aerobic ammonium-oxidizing bacteria (AerAOB) and anoxic ammonium-oxidizing bacteria (AnAOB). With oxygen, AerAOB oxidize ammonium to nitrite (nitritation), and with the nitrite AnAOB oxidize the residual ammonium to form dinitrogen gas and some nitrate (anammox). Additional aerobic nitrite oxidation to nitrate (nitratation) by nitrite-oxidizing bacteria (NOB) lowers the nitrogen removal efficiency, but it can, for instance, be prevented at low dissolved oxygen (DO) levels because the oxygen affinity of AerAOB is higher than that of NOB (16). Reactor configurations for the OLAND process can be based on suspended biomass growing in aggregates, like that in a sequencing batch reactor (SBR) (37) or a gas lift or upflow reactor (32). For suspended-growth systems there are two important challenges: biomass retention and equilibrated microbial activities.High biomass retention efficiency is a prerequisite in anammox technologies because of the slow growth of AnAOB (33). In suspended biomass systems, settling properties determine the retention of biomass and are related to the microbial aggregate morphology (floc or granule) and size. Granules can be defined as compact and dense aggregates with an approximately spherical external appearance that do not coagulate under decreased hydrodynamic shear conditions and settle significantly faster than flocs (18). Toh and coworkers calculated a lower sludge volume index for aerobic granules than for aerobic flocs and also showed that there was an increase in the settling velocity with increasing granule size (35). Hence, in terms of physical properties, large granules are preferable for suspended-growth applications.OLAND aggregate size not only influences settling properties but also affects the proportion of microbial nitrite production and consumption; lower AerAOB activity and higher AnAOB activity were observed with larger aggregates (25, 37). Theoretically, a microbial aggregate with equal nitrite production and nitrite consumption can remove ammonium autonomously, because of its independence from other aggregates for acquisition and conversion of nitrite. Hence, with an increasing aggregate size and thus with a decreasing ratio of nitrite production to nitrite consumption, three functional categories of aggregates can be distinguished: nitrite sources, autonomous nitrogen removers, and nitrite sinks. Because minimal nitrite accumulation is one of the prerequisites for high nitrogen removal efficiency in OLAND reactors, the presence of excess small aggregates is undesirable (9, 37).Although large granular aggregates are desirable for biomass retention and activity balance, so far no formation mechanisms have been proposed for OLAND granules, in contrast to the well-studied anaerobic (13) and aerobic (1) granules. In order to determine general and environment-specific determinants for aggregate size and architecture, three suspended-growth OLAND reactors with different inoculation and operation (mixing and aeration) parameters were selected, and these reactors were designated reactors A, B, and C (Table (Table1).1). The first objective of this study was to gain more insight into the relationship between OLAND aggregate size, AerAOB and AnAOB abundance, and the activity balance. The second objective was to propose pathways for aggregation and granulation by relating (dis)similarities in aggregate size distribution, morphology, and architecture to differences in reactor inoculation and operation.

TABLE 1.

Overview of the three OLAND reactor systems from which suspended biomass samples were obtained
ParameterReactor AaReactor BaReactor C
Reactor typeSBRSBRUpflow reactor
Vol (m3)0.0024.1600
Reactor ht/diam ratio0.940.5-0.8
InoculumOLAND biofilmActivated sludgeAnammox granules
WastewaterSyntheticDomesticbIndustrialc
Influent ammonium concn (mg N liter−1)230-330800250-350
Nitrogen removal rate (g N liter−1 day −1)0.45,d 1.1e0.651.3
Effluent nitrite concn (mg N liter−1)30-40d5-105-10
Influent COD/effluent COD (mg liter−1)0/0240/220200/150
pH7.4-7.87.4-7.68.0
Temp (°C)352530-35
DO level (mg O2 liter−1)0.4-1.10.5-1.02.0-3.0
Mixing mechanismMagnetic stirrerBladed impellerAeration
Biomass retention mechanismMSV, >0.73 m h−1MSV, >1.4 m h−1Three-phase separator
Sampling time (months after start-up)2d830
Open in a separate windowaAggregates settling at a rate higher than the minimum settling velocity (MSV) were not washed out of the sequencing batch reactors (SBR). The MSV was calculated by dividing the vertical distance of the water volume decanted per cycle by the settling time.bSupernatant from a municipal sludge digestor.cEffluent from a potato-processing factory pretreated with anaerobic digestion and struvite precipitation.dObtained at the end of a reactor start-up study (37).eObtained at the end of a reactor start-up study (9).  相似文献   
98.
Carotenoid turnover was investigated in mature leaves of Arabidopsis (Arabidopsis thaliana) by 14CO2 pulse-chase labeling under control-light (CL; 130 μmol photons m−2 s−1) and high-light (HL; 1,000 μmol photons m−2 s−1) conditions. Following a 30-min 14CO2 administration, photosynthetically fixed 14C was quickly incorporated in β-carotene (β-C) and chlorophyll a (Chl a) in all samples during a chase of up to 10 h. In contrast, 14C was not detected in Chl b and xanthophylls, even when steady-state amounts of the xanthophyll-cycle pigments and lutein increased markedly, presumably by de novo synthesis, in CL-grown plants under HL. Different light conditions during the chase did not affect the 14C fractions incorporated in β-C and Chl a, whereas long-term HL acclimation significantly enhanced 14C labeling of Chl a but not β-C. Consequently, the maximal 14C signal ratio between β-C and Chl a was much lower in HL-grown plants (1:10) than in CL-grown plants (1:4). In lut5 mutants, containing α-carotene (α-C) together with reduced amounts of β-C, remarkably high 14C labeling was found for α-C while the labeling efficiency of Chl a was similar to that of wild-type plants. The maximum 14C ratios between carotenes and Chl a were 1:2 for α-C:Chl a and 1:5 for β-C:Chl a in CL-grown lut5 plants, suggesting high turnover of α-C. The data demonstrate continuous synthesis and degradation of carotenes and Chl a in photosynthesizing leaves and indicate distinct acclimatory responses of their turnover to changing irradiance. In addition, the results are discussed in the context of photosystem II repair cycle and D1 protein turnover.Carotenoids are classified as accessory pigments in photosynthesis because they augment light harvesting in the blue spectral region by transferring the absorbed light energy to chlorophyll (Chl). However, the universal occurrence of carotenoids in photosynthetic cells, from bacteria to higher plants, indicates their essential roles, rather than mere accessory roles, in photosynthesis. Under excess light, carotenoids provide protection against photooxidative damage by facilitating dissipation of excitation energy from singlet- or triplet-state Chl and scavenging highly reactive singlet oxygen, which is generated through interaction between triplet excited Chl and oxygen (Demmig-Adams, 1990; Müller et al., 2001). These photoprotective functions make carotenoids indispensable for oxygenic photosynthesis, as demonstrated by lethal effects of inhibitors of carotenoid biosynthesis in plants (Bramley, 1993). Regulation of light harvesting and photoprotection by carotenoids requires their close proximity as well as the proper orientation to Chl molecules in pigment-protein complexes of PSI and PSII. Furthermore, a small fraction of non-protein-bound carotenoids serves as antioxidants in the lipid phase of photosynthetic membranes (Havaux and Niyogi, 1999; Havaux et al., 2004) and influences the structure and fluidity of the lipid bilayer (Gruszecki and Strzałka, 2005). Despite these and other lines of defense, the PSII reaction center polypeptide D1, and to a lesser extent also D2, undergo frequent photooxidative damage and repair in the light (Melis, 1999; Baena-González and Aro, 2002). When the repair process cannot keep up with the rate of photodamage, the overall quantum yield of PSII declines.Carotenoids are derived from isoprenoid precursors in plastids (for reviews on carotenoid biosynthesis in plants, see Lichtenthaler, 1999; Hirschberg, 2001; DellaPenna and Pogson, 2006; Giuliano et al., 2008; Tanaka et al., 2008; Cazzonelli and Pogson, 2010). Following the formation of linear C40 lycopene, the pathway splits into two branches of major cyclic carotenoids: the β,β-branch gives rise to β-carotene (β-C) having two β-rings, whereas the β,ϵ-branch leads to formation of α-carotene (α-C) having one β-ring and one ϵ-ring. Hydroxylation of β-C and α-C produces the xanthophylls zeaxanthin (Z) and lutein (L), respectively. In the β,β-branch, epoxidation of the β-rings of Z results in successive synthesis of antheraxanthin (A) and violaxanthin (V); subsequently, V can be converted to neoxanthin (N), the last carotenoid product of the β,β-branch. Except for some species (García-Plazaola et al., 2007), L does not undergo β-ring epoxidation and the β,ϵ-branch thus stops with L, the most abundant carotenoid in leaves.Each of these carotenoids occupies specific binding sites in the photosynthetic apparatus to fulfill distinct roles. In both PSI and PSII, carotenes (α-C and β-C) are generally bound in core complexes, which also harbor Chl a molecules, while the majority of xanthophylls (L, Z, A, V, and N) are bound in light-harvesting antenna complexes together with Chl a and Chl b molecules (Bassi et al., 1993; Lee and Thornber, 1995). Accumulation of β-C in core complexes is a common feature of diverse photosynthetic organisms, whereas the occurrence of α-C in addition to β-C is restricted to certain taxa. For higher plants, α-C has been found in leaves of some, but not all, shade-tolerant species (Thayer and Björkman, 1990; Demmig-Adams and Adams, 1992; Demmig-Adams, 1998; Matsubara et al., 2009). Based on this photoacclimatory behavior, it has been proposed that α-C may function as a light-harvesting pigment while β-C may contribute to photoprotection (Krause et al., 2001), presumably by scavenging singlet oxygen and mediating a cyclic electron transfer around PSII (Tracewell et al., 2001; Telfer, 2005).Pronounced light-dependent changes are also observed for xanthophyll composition in light-harvesting antenna complexes. In a short term (minutes to hours), operation of the xanthophyll cycle, involving Z, A, and V, modulates levels of Z in a light-dependent manner. It is widely accepted that Z is able to enhance the dissipation of excess light energy from singlet excited Chl while V is not (Demmig-Adams, 1990; Müller et al., 2001). Long-term acclimation (days) to strong irradiance typically results in an increased pool size of the xanthophyll-cycle pigments (V + A + Z) and downsizing of PSII antenna, as indicated by a greater Chl a-to-Chl b ratio (Demmig-Adams and Adams, 1992; Demmig-Adams, 1998; Matsubara et al., 2009). Based on the observed changes in steady-state amounts of xanthophylls and carotenes following irradiance shifts, alterations in the balance between biosynthesis and degradation, or turnover, have been implicated as a mechanism for long-term adjustment of carotenoid levels in leaves (Förster et al., 2009). However, just how much biosynthesis and degradation of different carotenoids occurs in photosynthesizing green leaves is an open question to date.In order to gain insight into carotenoid turnover of mature leaves, we conducted 14CO2 pulse-chase labeling experiments with Arabidopsis (Arabidopsis thaliana) plants. Carotenoid turnover has been studied in algae in the past by applying [14C]bicarbonate (Blass et al., 1959; Grumbach et al., 1978); for example, no more than 1% to 2% of the photosynthetically incorporated 14C was allocated to the lipophilic fraction containing Chl and carotenoid in Chlorella pyrenoidosa after a 2-h pulse application (Grumbach et al., 1978). Even lower labeling efficiency is expected for photosynthetic pigments in nongrowing green leaves, in which pigment turnover takes place almost exclusively as part of the maintenance and acclimation of photosynthetic membranes. To overcome this intrinsic but anticipated difficulty, a 14CO2 application setup was established for efficient and reproducible 14CO2 incorporation in detached leaves of Arabidopsis during a short (30-min) pulse period. Moreover, a method of pigment separation was developed for 14C detection in concentrated leaf pigment extracts using a radio-HPLC system. Because carotenoid composition exhibits marked sun-shade responses in leaves (Demmig-Adams and Adams, 1992; Demmig-Adams, 1998; Matsubara et al., 2009), 14CO2 labeling patterns were studied in three different sets of Arabidopsis plants: (1) plants grown under 130 μmol photons m−2 s−1 (control light [CL]) and exposed to CL during a chase period of up to 10 h (CL plants); (2) plants acclimated to 1,000 μmol photons m−2 s−1 (high light [HL]) for 2 weeks and exposed to HL during the chase period (HL plants); and (3) plants grown under CL but exposed to HL during the chase period (CL→HL plants). These treatments simulated short-term (CL→HL) and long-term (CL or HL) responses to irradiance. Finally, as 14C was found to be rapidly incorporated in β-C and Chl a molecules in leaves of wild-type plants, in which β-C represents the only carotene species, 14C labeling experiments were also conducted with leaves of lut5 mutants containing both α-C and β-C (Fiore et al., 2006; Kim and DellaPenna, 2006) to compare turnover of the two carotenes.  相似文献   
99.
Mitochondria play an essential role in nitric oxide (NO) signal transduction in plants. Using the biotin-switch method in conjunction with nano-liquid chromatography and mass spectrometry, we identified 11 candidate proteins that were S-nitrosylated and/or glutathionylated in mitochondria of Arabidopsis (Arabidopsis thaliana) leaves. These included glycine decarboxylase complex (GDC), a key enzyme of the photorespiratory C2 cycle in C3 plants. GDC activity was inhibited by S-nitrosoglutathione due to S-nitrosylation/S-glutathionylation of several cysteine residues. Gas-exchange measurements demonstrated that the bacterial elicitor harpin, a strong inducer of reactive oxygen species and NO, inhibits GDC activity. Furthermore, an inhibitor of GDC, aminoacetonitrile, was able to mimic mitochondrial depolarization, hydrogen peroxide production, and cell death in response to stress or harpin treatment of cultured Arabidopsis cells. These findings indicate that the mitochondrial photorespiratory system is involved in the regulation of NO signal transduction in Arabidopsis.Nitric oxide (NO) has emerged as a new chemical messenger in plant biology. It can interact with a variety of intracellular and extracellular targets, acting as either a cytotoxic or a cytoprotective agent. NO stimulates seed germination in different species, and a decrease in NO levels has been associated with fruit maturation and senescence of flowers (Beligni and Lamattina, 2001). NO production has been observed in response to several biotic and abiotic stimuli, such as pathogen infection, bacterial elicitors, high temperature, osmotic stress, and UV-B light (Durner et al., 1998; Barroso et al., 1999; Krause and Durner, 2004; Zeidler et al., 2004; Shapiro, 2005; Corpas et al., 2008; Kolbert et al., 2008; Zhao et al., 2009).Despite the proven importance of NO, little is known about signaling pathways downstream from it. During both programmed cell death and defense responses, NO requires cGMP and cADP Rib as secondary messengers (Wendehenne et al., 2001). Furthermore, NO activates mitogen-activated protein kinases in different plant species during stress signaling (Nakagami et al., 2005). However, direct biological activity of NO arises from chemical reactions between proteins and NO itself (Foster and Stamler, 2004; Dahm et al., 2006). S-Nitrosylation is a labile posttranslational modification with a half-life of seconds to a few minutes and represents a very sensitive mechanism for regulating cellular processes (Hess et al., 2005). More than 100 candidate S-nitrosylated proteins were identified from extracts of Arabidopsis (Arabidopsis thaliana) cultured cells treated with the NO donor S-nitrosoglutathione (GSNO) and from Arabidopsis leaves treated with gaseous NO (Lindermayr et al., 2005). Using the same proteomic approach, changes were characterized in S-nitrosylated proteins in Arabidopsis leaves undergoing a hypersensitive response (Romero-Puertas et al., 2008).In animals, mitochondria play a crucial role in S-nitrosylation-dependent NO signaling (Foster and Stamler, 2004). The mitochondrion is an essential organelle for normal cellular function, being an important site of ATP synthesis and an integrator for apoptotic signaling (Skulachev, 1999). Mitochondria interact with NO at several levels. One particularly well-characterized example is the inhibition of complex IV (cytochrome c oxidase) via binding of NO to its binuclear CuB/heme a3 site (Cleeter et al., 1994). There are several reasons why S-nitrosylation may be an important mitochondrial regulatory mechanism. For example, mitochondria contain sizeable pools of thiols and transition metals, all of which are known to modulate nitrosothiol (SNO) biochemistry (Foster and Stamler, 2004). In addition, mitochondria are highly membranous and accumulate lipophilic molecules such as NO. Interesting in this respect is the fact that the formation of the S-nitrosylating intermediate N2O3 is enhanced within membranes (Burwell et al., 2006).The role of mitochondria in stress-related responses has been investigated in both animals and plants. Endogenous nitrosylation of the catalytic Cys site of a subset of mitochondrial caspases serves as an on/off switch regulating caspase activity during apoptosis (Mannick et al., 2001). Moreover, cytochrome c, which is modified by NO at its heme iron during apoptosis, is released from mitochondria into the cytoplasm, which plays a critical role in many forms of apoptosis by stimulating apoptosome formation and subsequent caspase activation (Schonhoff et al., 2003). We previously showed that a prime target of NO in plants is the mitochondrial apparatus, causing an inhibition of KCN-sensitive respiration and an activation of alternative respiration via alternative oxidase (AOX; Huang et al., 2002; Krause and Durner, 2004; Livaja et al., 2008).The aim of this study was to identify possible targets for S-nitrosylation in mitochondria of Arabidopsis leaves in order to gain more insight into the regulatory function of NO at the protein level. Using a proteomic approach involving the highly specific biotin-switch method for detection and purification of S-nitrosylated proteins (Jaffrey and Snyder, 2001) in conjunction with liquid chromatography and tandem mass spectrometry (nanoLC/MS/MS), we could identify 11 mitochondrial proteins as targets for S-nitrosylation. Among these identified proteins, we focused our attention on the P-subunit of the Gly decarboxylase complex (GDC), which is an integral part of the photorespiratory system. Since the release of apoptotic factors from mitochondria may be a result of inhibition of respiration, transition of mitochondrial permeability, and formation of reactive oxygen species (ROS; Saviani et al., 2002; Taylor et al., 2004; Chen and Gibson, 2008), we investigated the molecular mechanism and the function of GDC-Cys modification in Arabidopsis.  相似文献   
100.
The epithelium efficiently attracts immune cells upon infection despite the low number of pathogenic microbes and moderate levels of secreted chemokines per cell. Here we examined whether horizontal intercellular communication between cells may contribute to a coordinated response of the epithelium. Listeria monocytogenes infection, transfection, and microinjection of individual cells within a polarized intestinal epithelial cell layer were performed and activation was determined at the single cell level by fluorescence microscopy and flow cytometry. Surprisingly, chemokine production after L. monocytogenes infection was primarily observed in non-infected epithelial cells despite invasion-dependent cell activation. Whereas horizontal communication was independent of gap junction formation, cytokine secretion, ion fluxes, or nitric oxide synthesis, NADPH oxidase (Nox) 4-dependent oxygen radical formation was required and sufficient to induce indirect epithelial cell activation. This is the first report to describe epithelial cell-cell communication in response to innate immune activation. Epithelial communication facilitates a coordinated infectious host defence at the very early stage of microbial infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号