首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2007年   1篇
  2006年   1篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1984年   3篇
  1982年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
11.
Two glucose-6-phosphate isomerase (GPI) mutants with approximately 60% residual activity in blood compared to wild type have been independently detected in offspring derived from 1-ethyl-1-nitrosourea-treated male mice. Homozygous mutants with about 20% residual activity were recovered in progeny of inter se matings of heterozygotes. However, in both mutant lines the number of homozygous mutants was less than expected suggesting an increased lethality of these animals. Results of linkage studies and of investigations of physicochemical properties of the mutant enzymes indicate point mutations at theGpi-1s structural locus on chromosome 7. Based on these findings the two new alleles were designatedGpi-1s b-m1Neu andGpi-1s b-m2Neu, respectively. The b-m1Neu allele codes for an erythrocyte enzyme which, in the homodimeric form, exhibits a decreased stability toward heat and urea, an altered isoelectric point, normalpH dependence, an increasedK m for fructose-6-phosphate, and increasedK i's for 6-phosphogluconate and 2,3-diphosphoglycerate (2,3-DPG) compared to the wild-type enzyme. The GPI-1sb-m2Neu homodimer, in contrast, is characterized by an even stronger instability, slightly alteredpH dependence, an increasedK i for 2,3-DPG, normal other kinetics, and normal isoelectric point. The different degree of stability of the mutant homodimersin vitro seems to be reflected in a different degree of stabilityin vivo, since GPI deficiency in general is more strongly expressed in the tissues of the homozygousGpi-1s b-m2Neu mutant compared to the homozygousGpi-1s b-m1Neu mutant. The similarity of the mutant enzymes to the allozymes found in human GPI deficiencies indicates the GPI deficient mouse mutants to be excellent models for the human disease.This research was supported in part by Contract BI6-156-D from the Commission of the European Communities.  相似文献   
12.
Antimicrobial peptides (AMPs) are effector molecules of innate immunity. To determine whether AMP susceptibility of S. aureus varies according to different types of infection, 102 isolates from patients with S. aureus bacteremia or recurrent skin and soft tissue infection, and colonizing isolates were investigated. Using microbroth dilution assays we found a narrow range of MICs of human β-defensin-3, cathelicidin LL-37 and bovine indolicidin without significant differences between the groups. Colony-forming unit (CFU) assays revealed minor differences in bactericidal activity with slightly but not significantly higher CFU reduction in colonizing isolates. These data do not support a role for differential AMP susceptibility in vitro as a major determinant of S. aureus invasive infection.  相似文献   
13.
Bryum capillare is shown to accumulate the isoflavones orobol and pratensein as the 7-O-glucosides and predominantly, as the 7-(6″-malonylglucosides). This is the first finding of isoflavonoids in bryophytes. The phylogenetic relevance of this observation is briefly discussed.  相似文献   
14.
The influence of mitochondrial creatine kinase on subcellular high energy systems has been investigated using isolated rat heart mitochondria, mitoplasts and intact heart and skeletal muscle tissue.In isolated mitochondria, the creatine kinase is functionally coupled to oxidative phosphorylation at active respiratory chain, so that it catalyses the formation of creatine phosphate against its thermodynamic equilibrium. Therefore the mass action ratio is shifted from the equilibrium ratio to lower values. At inhibited respiration, it is close to the equilibrium value, irrespective of the mechanism of the inhibition. The same results were obtained for mitoplasts under conditions where the mitochondrial creatine kinase is still associated with the inner membrane.In intact tissue increasing amounts of creatine phosphate are found in the mitochondrial compartment when respiration and/or muscle work are increased. It is suggested that at high rates of oxidative phosphorylation creatine phosphate is accumulated in the intermembrane space due to the high activity of mitochondrial creatine kinase and the restricted permeability of reactants into the extramitochondrial space. A certain amount of this creatine phosphate leaks into the mitochondrial matrix.This leak is confirmed in isolated rat heart mitochondria where creatine phosphate is taken up when it is generated by the mitochondrial creatine kinase reaction. At inhibited creatine kinase, external creatine phosphate is not taken up. Likewise, mitoplasts only take up creatine phosphate when creatine kinase is still associated with the inner membrane. Both findings indicate that uptake is dependent on the functional active creatine kinase coupled to oxidative phosphorylation.Creatine phosphate uptake into mitochondria is inhibited with carboxyatractyloside. This suggests a possible role of the mitochondrial adenine nucleotide translocase in creatine phosphate uptake.Taken together, our findings are in agreement with the proposal that creatine kinase operates in the intermembrane space as a functional unit with the adenine nucleotide translocase in the inner membrane for optimal transfer of energy from the electron transport chain to extramitochondrial ATP-consuming reactions.  相似文献   
15.
16.
A mouse with X-linked glucose-6-phosphate dehydrogenase (G6PD) deficiency has been recovered in offspring of 1-ethyl-1-nitrosourea-treated male mice. The activity alteration was detected in blood but can also be observed in other tissue extracts. Hemizygous, heterozygous, and homozygous mutants have, respectively, about 15, 60, and 15% G6PD remaining activity in the blood as compared to the wild type. Erythrocyte indices did not show differences between mutants and wild types. The mutation does not affect the electrophoretic migration, the isoelectric point, or the thermal stability. Kinetic properties, such as theK m for glucose-6-phosphate or for NADP and the relative utilization of substrate analogues, showed no differences between wild types and mutants with the exception of the relative utilization of deamino-NADP which was significantly lower in mutants. This is presently the only animal model for X-linked G6PD deficiency in humans.This research was supported in part by Contract BI6-156-D from the Commission of the European Communities.  相似文献   
17.
The clinical course of Staphylococcus aureus bacteremia varies extensively. We sought to determine the relationship between genetic characteristics of the infecting pathogen and clinical outcomes in an exploratory study. In two study centers, 317 blood culture isolates were analyzed by DNA microarray and spa genotyping. By uni- and multivariate regression analyses associations of genotype data with 30-day all-cause mortality, severe sepsis/septic shock, disseminated disease, endocarditis, and osteoarticular infection were investigated. Univariate analysis showed significant association between S. aureus genes/gene-clusters or clonal complexes and clinical endpoints. For example CC15 was associated with 30-day mortality and CC22 with osteoarticular infection. In multivariate analysis methicillin resistance (mecA, OR 4.8 [1.43–16.06]) and the beta-lactamase-gene (bla, OR 3.12 [1.17–8.30]) remained independently associated with 30-day mortality. The presence of genes for enterotoxins (sed/sej/ser) was associated with endocarditis (OR 5.11 [1.14–18.62]). Host factors such as McCabe classification (OR 4.52 [2.09–9.79] for mortality), age (OR 1.06 [1.03–1.10] per year), and community-acquisition (OR 3.40 [1.31–8.81]) had a major influence on disease severity, dissemination and mortality. Individual genotypes and clonal complexes of S. aureus can only partially explain clinical features and outcomes of S. aureus bacteremia. Genotype-phenotype association studies need to include adjustments for host factors like age, comorbidity and community-acquisition.  相似文献   
18.
19.
The genus Nicotiana contains species and varieties that respond differently to photoperiod for flowering time control as day-neutral, short-day and long-day plants. In classical photoperiodism studies, these varieties have been widely used to analyse the physiological nature for floral induction by day length. Since key regulators for flowering time control by day length have been identified in Arabidopsis thaliana by molecular genetic studies, it was intriguing to analyse how closely related plants in the Nicotiana genus with opposite photoperiodic requirements respond to certain flowering time regulators. SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and FRUITFULL (FUL) are two MADS box genes that are involved in the regulation of flowering time in Arabidopsis. SOC1 is a central flowering time pathway integrator, whereas the exact role of FUL for floral induction has not been established yet. The putative Nicotiana orthologs of SOC1 and FUL, NtSOC1 and NtFUL, were studied in day-neutral tobacco Nicotiana tabacum cv Hicks, in short-day tobacco N. tabacum cv Hicks Maryland Mammoth (MM) and long-day N. sylvestris plants. Both genes were similarly expressed under short- and long-day conditions in day-neutral and short-day tobaccos, but showed a different expression pattern in N. sylvestris. Overexpression of NtSOC1 and NtFUL caused flowering either in strict short-day (NtSOC1) or long-day (NtFUL) Nicotiana varieties under non-inductive photoperiods, indicating that these genes might be limiting for floral induction under non-inductive conditions in different Nicotiana varieties.  相似文献   
20.
FPF1 modulates the competence to flowering in Arabidopsis   总被引:6,自引:0,他引:6  
During the transition to flowing the FPF1 gene is expressed in the peripheral zone of apical meristems and in floral meristems of Arabidopsis. Constitutive expression of FPF1 causes early flowering in Arabidopsis under both long-day and short-day conditions and leads to a shortened juvenile phase as measured by the trichome distribution on the abaxial leaf surface. In the classical late flowering mutants, overexpression of FPF1 compensates partially for the late flowering phenotype, indicating that FPF1 acts downstream or in a parallel pathway to the mutated genes. The co-overexpression of 35S::AP1 with 35S::FPF1 leads to a synergistic effect on the shortening of the time to flowering under short-day conditions. The co-overexpression of 35S::FPF1 and 35S::LFY, however, shows only an additive reduction of flowering time and the conversion of nearly every shoot meristem, except the inflorescence meristem, to a floral meristem under the same light conditions. In addition, the constitutive expression of FPF1 attenuates the severe lfy-1 phenotype under short days and phenocopies to a great extent the lfy-1 mutant grown under long-day conditions. Thus, we assume that FPF1 modulates the competence to flowering of apical meristems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号