首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1773篇
  免费   94篇
  国内免费   4篇
  2023年   22篇
  2022年   39篇
  2021年   123篇
  2020年   42篇
  2019年   57篇
  2018年   83篇
  2017年   57篇
  2016年   62篇
  2015年   82篇
  2014年   107篇
  2013年   125篇
  2012年   119篇
  2011年   129篇
  2010年   52篇
  2009年   49篇
  2008年   71篇
  2007年   58篇
  2006年   71篇
  2005年   47篇
  2004年   29篇
  2003年   35篇
  2002年   27篇
  2001年   30篇
  2000年   29篇
  1999年   28篇
  1998年   8篇
  1997年   8篇
  1995年   4篇
  1994年   18篇
  1993年   10篇
  1992年   17篇
  1991年   16篇
  1990年   20篇
  1989年   18篇
  1988年   12篇
  1987年   17篇
  1986年   14篇
  1985年   21篇
  1984年   12篇
  1983年   10篇
  1982年   9篇
  1981年   7篇
  1979年   6篇
  1977年   7篇
  1976年   5篇
  1974年   8篇
  1973年   6篇
  1972年   8篇
  1971年   8篇
  1970年   7篇
排序方式: 共有1871条查询结果,搜索用时 31 毫秒
991.
992.
Up to 73% decrease in cost of media for plant regeneration and in vitro conservation was achieved in Curcuma longa cv Prathibha by using inexpensive carbon source and gelling agent. Laboratory reagent-grade sucrose was replaced by locally available commercial sugar (market sugar or sugar cubes) as carbon source and bacteriological grade agar by isabgol (also named isubgol) as gelling agent. No adverse effects on shoot regeneration and conservation on isabgol-gelled low-cost media were observed as compared to that on agar-gelled control medium (CM). Some 33–56% cultures of C. longa survived up to 12 mo. on isabgol-gelled medium in comparison to only 16% on CM. Genetic stability of 12-month-old in vitro-conserved plants was assessed using 25 random amplified polymorphic DNA (RAPD) primers; no significant variation was observed in RAPD profiles of mother plants and in vitro-conserved plantlets on CM and low-cost media.  相似文献   
993.
994.
Intensive use of endosulfan has resulted in contamination of soil and water environments at various sites in Pakistan. This study was conducted to isolate efficient endosulfan-degrading fungal strains from contaminated soils. Sixteen fungal strains were isolated from fifteen specific sites by employing enrichment techniques while using endosulfan as a sole sulfur source, and tested for their potential to degrade endosulfan. Among these fungal strains, Chaetosartorya stromatoides, Aspergillus terricola, and Aspergillus terreus degraded both α- and β-endosulfan upto 75% in addition to 20% abiotic degradation of the spiked amount (100 mg l−1) in the broth within 12 days of incubation. Biodegradation of endosulfan by soil fungi was accompanied by a substantial decrease in pH of the broth from 7.0 to 3.2. The major metabolic product was endosulfan diol along with very low concentrations of endosulfan ether. Maximum biodegradation of endosulfan by these selected fungal strains was found at an initial broth pH of 6, incubation temperature of 30°C and under agitation conditions. This study indicates that the isolated strains carried efficient enzyme systems required for bioremediation of endosulfan-contaminated soil and water environments.  相似文献   
995.
Ethylene is a gaseous plant growth hormone produced endogenously by almost all plants. It is also produced in soil through a variety of biotic and abiotic mechanisms, and plays a key role in inducing multifarious physiological changes in plants at molecular level. Apart from being a plant growth regulator, ethylene has also been established as a stress hormone. Under stress conditions like those generated by salinity, drought, waterlogging, heavy metals and pathogenicity, the endogenous production of ethylene is accelerated substantially which adversely affects the root growth and consequently the growth of the plant as a whole. Certain plant growth promoting rhizobacteria (PGPR) contain a vital enzyme, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which regulates ethylene production by metabolizing ACC (an immediate precursor of ethylene biosynthesis in higher plants) into α-ketobutyrate and ammonia. Inoculation with PGPR containing ACC deaminase activity could be helpful in sustaining plant growth and development under stress conditions by reducing stress-induced ethylene production. Lately, efforts have been made to introduce ACC deaminase genes into plants to regulate ethylene level in the plants for optimum growth, particularly under stressed conditions. In this review, the primary focus is on giving account of all aspects of PGPR containing ACC deaminase regarding alleviation of impact of both biotic and abiotic stresses onto plants and of recent trends in terms of introduction of ACC deaminase genes into plant and microbial species.  相似文献   
996.
Rava P  Hussain MM 《Biochemistry》2007,46(43):12263-12274
Microsomal triglyceride transfer protein (MTP) is essential for the assembly of neutral-lipid-rich apolipoprotein B (apoB) lipoproteins. Previously we reported that the Drosophila MTP transfers phospholipids but does not transfer triglycerides. In contrast, human MTP transfers both lipids. To explore the acquisition of triglyceride transfer activity by MTP, we evaluated amino acid sequences, protein structures, and the biochemical and cellular properties of various MTP orthologues obtained from species that diverged during evolution. All MTP orthologues shared similar secondary and tertiary structures, associated with protein disulfide isomerase, localized to the endoplasmic reticulum, and supported apoB secretion. While vertebrate MTPs transferred triglyceride, invertebrate MTPs lacked this activity. Thus, triglyceride transfer activity was acquired during the transition from invertebrates to vertebrates. Within vertebrates, fish, amphibians, and birds displayed 27%, 40%, and 100% triglyceride transfer activity compared to mammals. We conclude that MTP triglyceride transfer activity first appeared in fish and speculate that the acquisition of triglyceride transfer activity by MTP provided for a significant advantage in the evolution of larger and more complex organisms.  相似文献   
997.
Glucose monitoring is an essential component of modern diabetes management. Three in vivo glucose sensors are now available for clinical use: a subcutaneously implanted amperometric enzyme electrode, a reverse iontophoresis system and a microdialysis-based device. Improvements in glucose-sensing technology continue to be sought, e.g. wired enzyme technology, viscometric affinity sensing and totally implanted glucose sensors. Non-invasive glucose sensing is the ultimate goal of glucose monitoring, but the most investigated approach, near-infrared (NIR) spectroscopy, is presently too imprecise for clinical application. Fluorescence-based glucose sensing offers several advantages and we are investigating strategies which include NIR-based fluorescence resonance energy transfer using concanavalin A/dextran; changes in the intrinsic fluorescence of hexokinase encapsulated in sol-gel; and non-invasive glucose monitoring of cells by measuring glucose-related changes in NADP(H).  相似文献   
998.
999.
The amyloidogenic pathway leading to the production and deposition of Abeta peptides, major constituents of Alzheimer disease senile plaques, is linked to neuronal metal homeostasis. The amyloid precursor protein binds copper and zinc in its extracellular domain, and the Abeta peptides also bind copper, zinc, and iron. The first step in the generation of Abeta is cleavage of amyloid precursor protein by the aspartic protease BACE1. Here we show that BACE1 interacts with CCS (the copper chaperone for superoxide dismutase-1 (SOD1)) through domain I and the proteins co-immunoprecipitate from rat brain extracts. We have also been able to visualize the co-transport of membranous BACE1 and soluble CCS through axons. BACE1 expression reduces the activity of SOD1 in cells consistent with direct competition for available CCS as overexpression of CCS restores SOD1 activity. Finally, we demonstrate that the twenty-four residue C-terminal domain of BACE1 binds a single Cu(I) atom with high affinity through cysteine residues.  相似文献   
1000.
Activation-induced cell death (AICD) plays a key role in the homeostasis of the immune system. Autoreactive T cells are eliminated through AICD both from the thymus and periphery. In this study, we show that NOD peripheral T cells, especially CD8(+) T cells, display a decreased susceptibility to anti-CD3-induced AICD in vivo compared with T cells from diabetes-resistant B6, nonobese diabetes-resistant, and NOD.B6Idd4 mice. The susceptibility of NOD CD8(+) T cells to AICD varies in an age- and dose-dependent manner upon stimulation in vivo with either a mitogenic or nonmitogenic anti-CD3. NOD T cells preactivated by anti-CD3 in vivo are less susceptible than B6 T cells to TCR-induced AICD. Treatment of NOD mice with a mitogenic anti-CD3 depletes CD4(+)CD25(-)CD62L(+) but not CD4(+)CD25(+)CD62L(+) T cells, thereby resulting in an increase of the latter subset in the spleen. Treatment with a nonmitogenic anti-CD3 mAb delays the onset of T1D in 8.3 TCR transgenic NOD mice. These results demonstrate that the capacity of anti-CD3 to protect NOD mice from T1D correlates with its ability to perturb T cell homeostasis by inducing CD8(+) T cell AICD and increasing the number of CD4(+)CD25(+)CD62L(+) T cells in the periphery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号