首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   585篇
  免费   38篇
  2024年   1篇
  2023年   5篇
  2022年   11篇
  2021年   18篇
  2020年   8篇
  2019年   6篇
  2018年   14篇
  2017年   12篇
  2016年   19篇
  2015年   32篇
  2014年   33篇
  2013年   39篇
  2012年   52篇
  2011年   62篇
  2010年   36篇
  2009年   28篇
  2008年   33篇
  2007年   28篇
  2006年   33篇
  2005年   24篇
  2004年   25篇
  2003年   22篇
  2002年   24篇
  2001年   6篇
  2000年   10篇
  1999年   4篇
  1998年   3篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1977年   3篇
  1976年   1篇
  1974年   3篇
  1973年   2篇
  1972年   1篇
  1970年   1篇
  1965年   4篇
排序方式: 共有623条查询结果,搜索用时 15 毫秒
41.
Conformational switching upon core RNA polymerase binding is an integral part of functioning of bacterial sigma factors. Here, we have studied dynamical features of two alternative sigma factors. A study of fluorescence resonance energy transfer and hydrodynamic measurements in Escherichia coli σ(32) suggest a compact shape like those found in complex with anti-sigma factors. On the other hand, the fluorescence anisotropy of probes attached to different regions of the protein and previous hydrogen exchange measurements suggest significant internal flexibility, particularly in the C-terminal half and region 1. In a homologous sigma factor, σ(F) of Mycobacterium tuberculosis, emission spectra and fluorescence resonance energy transfer between the single tryptophan (W112) and probes placed in different regions suggest a compact conformation for a major part of the N-terminal half encompassing region 2 and the flexible C-terminal half. Fluorescence anisotropy measurements suggest significant flexibility in the C-terminal half and region 1, as well. Thus, free alternative sigma factors may be in equilibrium between two conformations: a compact one in which the promoter interacting motifs are trapped in the wrong conformation and another less abundant one with a more open and flexible conformation. Such flexibility may be important for promoter recognition and interaction with many partner proteins.  相似文献   
42.
An important cytokine role in dengue fever pathogenesis has been described. These molecules can be associated with haemorrhagic manifestations, coagulation disorders, hypotension and shock, all symptoms implicated in vascular permeability and disease worsening conditions. Several immunological diseases have been treated by cytokine modulation and dexamethasone is utilized clinically to treat pathologies with inflammatory and autoimmune etiologies. We established an in vitro model with human monocytes infected by dengue virus-2 for evaluating immunomodulatory and antiviral activities of potential pharmaceutical products. Flow cytometry analysis demonstrated significant dengue antigen detection in target cells two days after infection. TNF-alpha, IFN-alpha, IL-6 and IL-10 are produced by in vitro infected monocytes and are significantly detected in cell culture supernatants by multiplex microbead immunoassay. Dexamethasone action was tested for the first time for its modulation in dengue infection, presenting optimistic results in both decreasing cell infection rates and inhibiting TNF-alpha, IFN-alpha and IL-10 production. This model is proposed for novel drug trials yet to be applied for dengue fever.  相似文献   
43.
Peptidyl-tRNA hydrolase cleaves the ester bond between tRNA and the attached peptide in peptidyl-tRNA in order to avoid the toxicity resulting from its accumulation and to free the tRNA available for further rounds in protein synthesis. The structure of the enzyme from Mycobacterium tuberculosis has been determined in three crystal forms. This structure and the structure of the enzyme from Escherichia coli in its crystal differ substantially on account of the binding of the C terminus of the E. coli enzyme to the peptide-binding site of a neighboring molecule in the crystal. A detailed examination of this difference led to an elucidation of the plasticity of the binding site of the enzyme. The peptide-binding site of the enzyme is a cleft between the body of the molecule and a polypeptide stretch involving a loop and a helix. This stretch is in the open conformation when the enzyme is in the free state as in the crystals of M. tuberculosis peptidyl-tRNA hydrolase. Furthermore, there is no physical continuity between the tRNA and the peptide-binding sites. The molecule in the E. coli crystal mimics the peptide-bound enzyme molecule. The peptide stretch referred to earlier now closes on the bound peptide. Concurrently, a channel connecting the tRNA and the peptide-binding site opens primarily through the concerted movement of two residues. Thus, the crystal structure of M. tuberculosis peptidyl-tRNA hydrolase when compared with the crystal structure of the E. coli enzyme, leads to a model of structural changes associated with enzyme action on the basis of the plasticity of the molecule.  相似文献   
44.
An immunodominant heat shock protein (Hsp 24) was purified from Vibrio cholerae O139 at 42 degrees C and used as an immunomodulator for studying the gut immune response. T cell clone and T cell line specific for the Hsp 24 were generated from the lymphocytes of lamina propria and intra-epithelial lymphocytes of mice orally infected with V. cholerae O139, respectively. The T cell clone was TCR alphabeta(+), CD4(+) and appeared to play an important role in the functioning of gut B-lymphocytes. The T cell line had heterogenous population of CD8+ and CD4+ cells, most of which were found to be TCR alphabeta(+) and a minor population was TCR gammadelta(+). The lymphokine profile of T cell line showed IFN-gamma to be the most abundant lymphokine followed by IL-2 and IL-4. The possible involvement of alternative pathway of activation for T cell clone was also addressed in this study. The splenocytes showed an up-regulation of their CD2 receptor expression on stimulation with the Hsp-24. The pattern of lymphokines released by splenocytes stimulated with the Hsp-24 showed no particular cell type to be responsible for mounting immune response. Thus, there is involvement of both, mucosal and peripheral arm of the immune system.  相似文献   
45.
Although identified as an early-diverged protozoan, Giardia lamblia shares many similarities with higher eukaryotic cells, including an internal membrane system and cytoskeleton, as well as secretory pathways. However, unlike many other eukaryotes, Giardia does not synthesize lipids de novo, but rather depends on exogenous sources for both energy production and organelle or membrane biogenesis. It is not known how lipid molecules are taken up by this parasite and if endocytic pathways are involved in this process. In this investigation, we tested the hypothesis that highly regulated and selective lipid transport machinery is present in Giardia and necessary for the efficient internalization and intracellular targeting of ceramide molecules, the major sphingolipid precursor. Using metabolic and pathway inhibitors, we demonstrate that ceramide is internalized through endocytic pathways and is primarily targeted into perinuclear/endoplasmic reticulum membranes. Further investigations suggested that Giardia uses both clathrin-dependent pathways and the actin cytoskeleton for ceramide uptake, as well as microtubule filaments for intracellular localization and targeting. We speculate that this parasitic protozoan has evolved cytoskeletal and clathrin-dependent endocytic mechanisms for importing ceramide molecules from the cell exterior for the synthesis of membranes and vesicles during growth and differentiation.  相似文献   
46.
A galactose-specific adhesin was isolated from the fimbriae of an enteroaggregative Escherichia coli (EAEC) strain. The adhesin was found to be a high molecular weight aggregate of the 18-kDa monomer. The dimeric (36 kDa) and tetrameric (76 kDa) forms appeared in sodium dodecyl sulphate polyacrylamide gel electrophoresis when a higher concentration of the adhesin was used. The IgGAD (IgG against adhesin) obtained from the immune sera raised in rabbits against purified adhesin could detect all three forms of the adhesin even from the crude fimbrial preparation. The IgGAD failed to recognize the adhesin in the presence of galactose, thereby suggesting the antibody-binding site and the sugar-binding site on the adhesin might be same or overlapping. Furthermore, the IgGAD could localize the adhesin exclusively on the fimbriae as observed in immunogold electron microscopy. The aggregative adherence of the bacteria to HEp-2 cells was reduced to 70% in the presence of the IgGAD. A glycoprotein (34 kDa) present in the membrane fraction of HEp-2 cells interacted with the purified adhesin in a galactose-specific manner. The IgGAD could recognize the adhesin from the crude fimbrial preparation of 9 out of 10 clinical isolates of EAEC strains but failed to identify any protein from the crude fimbrial preparation of Salmonella typhimurium (fim +ve as well as fim −ve strain), Vibrio cholerae (WO7) or Escherichia coli DH5α.  相似文献   
47.
Bruchid beetle larvae cause major losses in grain legume crops throughout the world. Some bruchid species, such as the cowpea weevil (Callosobruchus maculatus) and the Mexican bean weevil (Zabrotes subfasciatus), are pests that damage stored seeds. The Mediterranean flour moth (Anagasta kuehniella) is of major economic importance as a flour and grain feeder; it is often a severe pest in flour mills. Plant lectins have been implicated as antibiosis factors against insects. Bauhinia monandra leaf lectin (BmoLL) was tested for anti-insect activity against C. maculatus, Z. subfasciatus and A. kuehniella larvae. BmoLL produced ca. 50% mortality to Z. subfaciatus and C. maculatus when incorporated into an artificial diet at a level of 0.5% and 0.3% (w/w), respectively. BmooLL up to 1% did not significantly decrease the survival of A. kuehniella larvae, but produced a decrease of 40% in weight. Affinity chromatography showed that BmoLL bound to midgut proteins of the insect C. maculatus. 33 kDa subunit BmoLL was not digested by midgut preparations of these bruchids. BmoLL-fed C. maculatus larvae increased the digestion of potato starch by 25% compared with the control. The transformation of the genes coding for this lectin could be useful in the development of insect resistance in important agricultural crops.  相似文献   
48.
49.
The betagamma subunit of G proteins (Gbetagamma) is known to transfer signals from cell surface receptors to intracellular effector molecules. Recent results suggest that Gbetagamma also interacts with microtubules and is involved in the regulation of the mitotic spindle. In the current study, the anti-microtubular drug nocodazole was employed to investigate the mechanism by which Gbetagamma interacts with tubulin and its possible implications in microtubule assembly in cultured PC12 cells. Nocodazole-induced depolymerization of microtubules drastically inhibited the interaction between Gbetagamma and tubulin. Gbetagamma was preferentially bound to microtubules and treatment with nocodazole suggested that the dissociation of Gbetagamma from microtubules is an early step in the depolymerization process. When microtubules were allowed to recover after removal of nocodazole, the tubulin-Gbetagamma interaction was restored. Unlike Gbetagamma, however, the interaction between tubulin and the alpha subunit of the Gs protein (Gsalpha) was not inhibited by nocodazole, indicating that the inhibition of tubulin-Gbetagamma interactions during microtubule depolymerization is selective. We found that Gbetagamma also interacts with gamma-tubulin, colocalizes with gamma-tubulin in centrosomes, and co-sediments in centrosomal fractions. The interaction between Gbetagamma and gamma-tubulin was unaffected by nocodazole, suggesting that the Gbetagamma-gamma-tubulin interaction is not dependent on assembled microtubules. Taken together, our results suggest that Gbetagamma may play an important and definitive role in microtubule assembly and/or stability. We propose that betagamma-microtubule interaction is an important step for G protein-mediated cell activation. These results may also provide new insights into the mechanism of action of anti-microtubule drugs.  相似文献   
50.
The interaction of the HIV Gag polyprotein with nucleic acid is a critical step in the assembly of viral particles. The Gag polyprotein is composed of the matrix (MA), capsid (CA), and nucleocapsid (NC) domains. The NC domain is required for nucleic acid interactions, and the CA domain is required for Gag-Gag interactions. Previously, we have investigated the binding of the NC protein to d(TG)(n) oligonucleotides using surface plasmon resonance (SPR) spectroscopy. We found a single NC protein is able to bind to more than one immobilized oligonucleotide, provided that the oligonucleotides are close enough together. As NC is believed to be the nucleic acid binding domain of Gag, we might expect Gag to show the same complex behavior. We wished to analyze the stoichiometry of Gag binding to oligonucleotides without this complication due to tertiary complex formation. We have therefore analyzed Gag binding to extremely low oligonucleotide density on SPR chips. Such low densities of oligonucleotides are difficult to accurately quantitate. We have determined by Fourier transform ion cyclotron (FTICR) mass spectrometry that four molecules of NC bind to d(TG)(10) (a 20-base oligonucleotide). We developed a method of calibrating low-density surfaces using NC calibration injections. Knowing the maximal response and the stoichiometry of binding, we can precisely determine the amount of oligonucleotide immobilized at these very-low-density surfaces (<1 Response Unit). Using this approach, we have measured the binding of Gag to d(TG)(10). Gag binds to a 20-mer with a stoichiometry of greater than 4. This suggests that once Gag is bound to the immobilized oligonucleotide, additional Gag molecules can bind to this complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号