首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1087篇
  免费   46篇
  1133篇
  2023年   6篇
  2022年   21篇
  2021年   32篇
  2020年   16篇
  2019年   17篇
  2018年   26篇
  2017年   22篇
  2016年   30篇
  2015年   45篇
  2014年   48篇
  2013年   58篇
  2012年   83篇
  2011年   82篇
  2010年   40篇
  2009年   42篇
  2008年   48篇
  2007年   47篇
  2006年   44篇
  2005年   46篇
  2004年   27篇
  2003年   36篇
  2002年   27篇
  2001年   13篇
  2000年   19篇
  1999年   8篇
  1998年   7篇
  1997年   6篇
  1996年   8篇
  1995年   6篇
  1992年   9篇
  1990年   5篇
  1988年   4篇
  1987年   8篇
  1986年   6篇
  1985年   8篇
  1984年   8篇
  1978年   5篇
  1977年   9篇
  1976年   9篇
  1975年   5篇
  1974年   8篇
  1973年   11篇
  1972年   9篇
  1971年   14篇
  1970年   16篇
  1969年   12篇
  1968年   14篇
  1967年   11篇
  1966年   14篇
  1965年   7篇
排序方式: 共有1133条查询结果,搜索用时 15 毫秒
81.
Peptidyl-tRNA hydrolase cleaves the ester bond between tRNA and the attached peptide in peptidyl-tRNA in order to avoid the toxicity resulting from its accumulation and to free the tRNA available for further rounds in protein synthesis. The structure of the enzyme from Mycobacterium tuberculosis has been determined in three crystal forms. This structure and the structure of the enzyme from Escherichia coli in its crystal differ substantially on account of the binding of the C terminus of the E. coli enzyme to the peptide-binding site of a neighboring molecule in the crystal. A detailed examination of this difference led to an elucidation of the plasticity of the binding site of the enzyme. The peptide-binding site of the enzyme is a cleft between the body of the molecule and a polypeptide stretch involving a loop and a helix. This stretch is in the open conformation when the enzyme is in the free state as in the crystals of M. tuberculosis peptidyl-tRNA hydrolase. Furthermore, there is no physical continuity between the tRNA and the peptide-binding sites. The molecule in the E. coli crystal mimics the peptide-bound enzyme molecule. The peptide stretch referred to earlier now closes on the bound peptide. Concurrently, a channel connecting the tRNA and the peptide-binding site opens primarily through the concerted movement of two residues. Thus, the crystal structure of M. tuberculosis peptidyl-tRNA hydrolase when compared with the crystal structure of the E. coli enzyme, leads to a model of structural changes associated with enzyme action on the basis of the plasticity of the molecule.  相似文献   
82.
An intact B-box 2 domain is essential for the antiretroviral activity of TRIM5alpha. We modeled the structure of the B-box 2 domain of TRIM5alpha based on the existing three-dimensional structure of the B-box 2 domain of human TRIM29. Using this model, we altered the residues predicted to be exposed on the surface of this globular structure. Most of the alanine substitutions in these residues exerted little effect on the antiretroviral activity of human TRIM5alphahu or rhesus monkey TRIM5alpharh. However, alteration of arginine 119 of TRIM5alphahu or the corresponding arginine 121 of TRIM5alpharh diminished the abilities of the proteins to restrict retroviral infection without affecting trimerization or recognition of the viral capsid. The abilities of these functionally defective TRIM5alpha proteins to accelerate the uncoating of the targeted retroviral capsid were abolished. Removal of the positively charged side chain from B-box 2 arginines 119/120/121 resulted in diminished proteasome-independent turnover of TRIM5alpha and the related restriction factor TRIMCyp. However, testing of an array of mutants revealed that the rapid turnover and retroviral restriction functions of this B-box 2 region are separable.  相似文献   
83.
An immunodominant heat shock protein (Hsp 24) was purified from Vibrio cholerae O139 at 42 degrees C and used as an immunomodulator for studying the gut immune response. T cell clone and T cell line specific for the Hsp 24 were generated from the lymphocytes of lamina propria and intra-epithelial lymphocytes of mice orally infected with V. cholerae O139, respectively. The T cell clone was TCR alphabeta(+), CD4(+) and appeared to play an important role in the functioning of gut B-lymphocytes. The T cell line had heterogenous population of CD8+ and CD4+ cells, most of which were found to be TCR alphabeta(+) and a minor population was TCR gammadelta(+). The lymphokine profile of T cell line showed IFN-gamma to be the most abundant lymphokine followed by IL-2 and IL-4. The possible involvement of alternative pathway of activation for T cell clone was also addressed in this study. The splenocytes showed an up-regulation of their CD2 receptor expression on stimulation with the Hsp-24. The pattern of lymphokines released by splenocytes stimulated with the Hsp-24 showed no particular cell type to be responsible for mounting immune response. Thus, there is involvement of both, mucosal and peripheral arm of the immune system.  相似文献   
84.
We examined a hypothesis that reactive oxygen species (ROS) generated by organophosphate compound dichlorvos modulates Hsp70 expression and anti-oxidant defense enzymes and acts as a signaling molecule for apoptosis in the exposed organism. Dichlorvos (0.015–15.0 ppb) without or with inhibitors of Hsp70, superoxide dismutase (SOD) and catalase (CAT) were fed to the third instar larvae of Drosophila melanogaster transgenic for hsp70 (hsp70-lacZ) Bg9 to examine Hsp70 expression, oxidative stress and apoptotic markers. A concentration- and time-dependent significant increase in ROS generation accompanied by a significant upregulation of Hsp70 preceded changes in antioxidant defense enzyme activities and contents of glutathione, malondialdehyde and protein carbonyl in the treated organisms. An inhibitory effect on SOD and CAT activities significantly upregulated ROS generation and Hsp70 expression in the exposed organism while inhibition of Hsp70 significantly affected oxidative stress markers induced by the test chemical. A comparison made among ROS generation, Hsp70 expression and apoptotic markers showed that ROS generation is positively correlated with Hsp70 expression and apoptotic cell death end points indicating involvement of ROS in the overall adversity caused by the test chemical to the organism. The study suggests that (a) Hsp70 and anti-oxidant enzymes work together for cellular defense against xenobiotic hazard in D. melanogaster and (b) free radicals may modulate Hsp70 expression and apoptosis in the exposed organism.  相似文献   
85.
Using calpastatin antibody we have identified a 145 kDa major band along with two relatively minor bands at 120 kDa and 110 kDa calpastatin molecules in bovine pulmonary artery smooth muscle mitochondria. To the best of our knowledge this is first report regarding the identification of calpastatin in mitochondria. We also demonstrated the presence of micro-calpain in the mitochondria by immunoblot and casein zymogram studies. Immunoblot studies identified two major bands corresponding to the 80 kDa large and the 28 kDa small subunit of mu-calpain. Additionally 76 kDa, 40 kDa and 18 kDa immunoreactive bands have also been detected. Purification and N-terminal amino acid sequence analysis of the identified proteins confirmed their identity as mu-calpain and calpastatins. Immunoprecipitation study revealed molecular association between mu-calpain and calpastatin in the mitochondria indicating that calpastatin could play an important role in preventing uncontrolled activity of mu-calpain which otherwise may facilitate pulmonary hypertension, smooth muscle proliferation and apoptosis.  相似文献   
86.
Srivastava PP  Kar PK  Awasthi AK  Urs SR 《Genetika》2007,43(8):1038-1045
Evaluation of genetic resources is an essential prerequisite for their effective utilization. In India, the tropical climate prevails in most of the sericultural belts, where temperature goes beyond the ambient during summer, adversely affecting the silkworm rearing. Although polyvoltine silkworms are poor in silk content, they are mostly tolerant to tropical conditions and diseases. With an aim to identify potential silkworm races/breeds specific to thermo-tolerance for their effective utilization in breeding programme, 15 selected polyvoltine silkworm races were studied for their thermo-tolerance behaviour. Their genomic DNA samples were analyzed for ISSR-PCR using 15 selected primers. The UPGMA analysis based on Nei and Li algorithm has clustered the 15 silkworm races into five groups and one isolate. ALSCAL-multidimensional scaling has not only supported the information generated by the dendrogram, but it has made the genetic distance among races more clear and substantiating their status in terms of thermal stress where pupation rate was taken as indicator. Further, discriminant function analysis (DFA) was done with three groups of silkworms classified for thermal stress viz. susceptible, moderately tolerant and tolerant. The canonical correlation value was estimated to be 0.987 (Wilk's lambda = 0.004; chi2 = 36.044, p < 0.05). DFA clearly discriminated the above three groups. Beta statistics with t value and its significance for the markers identified through stepwise multiple regression analysis (MRA) revealed a total of five bands (807(1300), 808(3000), 808(4000), 834(4000), and 834(3000)) showing correlation with pupation rate after thermal treatment. Out of them, marker 8083000 showed maximum and highly significant correlation (r = 0.757, p < 0.001, t = 4.182) with pupation rate among the silkworm races. The identified putative markers are being used to develop DNA marker to be used in evolving thermo-tolerant silkworm breeds using marker assisted selection programme.  相似文献   
87.
Although identified as an early-diverged protozoan, Giardia lamblia shares many similarities with higher eukaryotic cells, including an internal membrane system and cytoskeleton, as well as secretory pathways. However, unlike many other eukaryotes, Giardia does not synthesize lipids de novo, but rather depends on exogenous sources for both energy production and organelle or membrane biogenesis. It is not known how lipid molecules are taken up by this parasite and if endocytic pathways are involved in this process. In this investigation, we tested the hypothesis that highly regulated and selective lipid transport machinery is present in Giardia and necessary for the efficient internalization and intracellular targeting of ceramide molecules, the major sphingolipid precursor. Using metabolic and pathway inhibitors, we demonstrate that ceramide is internalized through endocytic pathways and is primarily targeted into perinuclear/endoplasmic reticulum membranes. Further investigations suggested that Giardia uses both clathrin-dependent pathways and the actin cytoskeleton for ceramide uptake, as well as microtubule filaments for intracellular localization and targeting. We speculate that this parasitic protozoan has evolved cytoskeletal and clathrin-dependent endocytic mechanisms for importing ceramide molecules from the cell exterior for the synthesis of membranes and vesicles during growth and differentiation.  相似文献   
88.
A galactose-specific adhesin was isolated from the fimbriae of an enteroaggregative Escherichia coli (EAEC) strain. The adhesin was found to be a high molecular weight aggregate of the 18-kDa monomer. The dimeric (36 kDa) and tetrameric (76 kDa) forms appeared in sodium dodecyl sulphate polyacrylamide gel electrophoresis when a higher concentration of the adhesin was used. The IgGAD (IgG against adhesin) obtained from the immune sera raised in rabbits against purified adhesin could detect all three forms of the adhesin even from the crude fimbrial preparation. The IgGAD failed to recognize the adhesin in the presence of galactose, thereby suggesting the antibody-binding site and the sugar-binding site on the adhesin might be same or overlapping. Furthermore, the IgGAD could localize the adhesin exclusively on the fimbriae as observed in immunogold electron microscopy. The aggregative adherence of the bacteria to HEp-2 cells was reduced to 70% in the presence of the IgGAD. A glycoprotein (34 kDa) present in the membrane fraction of HEp-2 cells interacted with the purified adhesin in a galactose-specific manner. The IgGAD could recognize the adhesin from the crude fimbrial preparation of 9 out of 10 clinical isolates of EAEC strains but failed to identify any protein from the crude fimbrial preparation of Salmonella typhimurium (fim +ve as well as fim −ve strain), Vibrio cholerae (WO7) or Escherichia coli DH5α.  相似文献   
89.
90.
The betagamma subunit of G proteins (Gbetagamma) is known to transfer signals from cell surface receptors to intracellular effector molecules. Recent results suggest that Gbetagamma also interacts with microtubules and is involved in the regulation of the mitotic spindle. In the current study, the anti-microtubular drug nocodazole was employed to investigate the mechanism by which Gbetagamma interacts with tubulin and its possible implications in microtubule assembly in cultured PC12 cells. Nocodazole-induced depolymerization of microtubules drastically inhibited the interaction between Gbetagamma and tubulin. Gbetagamma was preferentially bound to microtubules and treatment with nocodazole suggested that the dissociation of Gbetagamma from microtubules is an early step in the depolymerization process. When microtubules were allowed to recover after removal of nocodazole, the tubulin-Gbetagamma interaction was restored. Unlike Gbetagamma, however, the interaction between tubulin and the alpha subunit of the Gs protein (Gsalpha) was not inhibited by nocodazole, indicating that the inhibition of tubulin-Gbetagamma interactions during microtubule depolymerization is selective. We found that Gbetagamma also interacts with gamma-tubulin, colocalizes with gamma-tubulin in centrosomes, and co-sediments in centrosomal fractions. The interaction between Gbetagamma and gamma-tubulin was unaffected by nocodazole, suggesting that the Gbetagamma-gamma-tubulin interaction is not dependent on assembled microtubules. Taken together, our results suggest that Gbetagamma may play an important and definitive role in microtubule assembly and/or stability. We propose that betagamma-microtubule interaction is an important step for G protein-mediated cell activation. These results may also provide new insights into the mechanism of action of anti-microtubule drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号