首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   636篇
  免费   36篇
  国内免费   1篇
  673篇
  2023年   13篇
  2022年   14篇
  2021年   36篇
  2020年   12篇
  2019年   16篇
  2018年   28篇
  2017年   19篇
  2016年   27篇
  2015年   38篇
  2014年   36篇
  2013年   69篇
  2012年   72篇
  2011年   60篇
  2010年   32篇
  2009年   24篇
  2008年   32篇
  2007年   28篇
  2006年   23篇
  2005年   25篇
  2004年   14篇
  2003年   4篇
  2002年   5篇
  2001年   4篇
  2000年   3篇
  1998年   3篇
  1997年   2篇
  1995年   1篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1986年   5篇
  1985年   2篇
  1984年   2篇
  1980年   2篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1966年   1篇
  1958年   1篇
  1957年   1篇
排序方式: 共有673条查询结果,搜索用时 0 毫秒
91.
Numerous experimental techniques and computational studies, proposed in recent times, have revolutionized the understanding of protein-folding paradigm. The complete understanding of protein folding and intermediates are of medical relevance, as the aggregation of misfolding proteins underlies various diseases, including some neurodegenerative disorders. Here, we describe the unfolding of M-crystallin, a βγ-crystallin homologue protein from archaea, from its native state to its denatured state using multidimensional NMR and other biophysical techniques. The protein, which was earlier characterized to be a predominantly β-sheet protein in its native state, shows different structural propensities (α and β), under different denaturing conditions. In 2 M GdmCl, the protein starts showing two distinct sets of peaks, with one arising from a partially unfolded state and the other from a completely folded state. The native secondary structural elements start disappearing as the denaturant concentration approaches 4 M. Subsequently, the protein is completely unfolded when the denaturant concentration is 6 M. The 15N relaxation data (T1/T2), heteronuclear 1H-15N Overhauser effects (nOes), NOESY data, and other biophysical data taken together indicate that the protein shows a consistent, gradual change in its structural and motional preferences with increasing GdmCl concentration.  相似文献   
92.
93.
94.
Abstract: Species differences in susceptibility are a unique feature associated with the neurotoxicity of β-N-oxalyl-l -α,β-diaminopropionic acid (l -ODAP), the Lathyrus sativus neurotoxin, and the excitotoxic mechanism proposed for its mechanism of toxicity does not account for this feature. The present study examines whether neurotoxicity of l -ODAP is the result of an interference in the metabolism of any amino acid and if it could form the basis to explain the species differences in susceptibility. Thus, Wistar rats and BALB/c (white) mice, which are normally resistant to l -ODAP, became susceptible to it following pretreatment with tyrosine (or phenylalanine), exhibiting typical neurotoxic symptoms. C57BL/6J (black) mice were, however, normally susceptible to l -ODAP without any pretreatment with tyrosine. Among the various enzymes associated with tyrosine metabolism examined, the activity of only tyrosine aminotransferase (TAT) was inhibited specifically by l -ODAP. The inhibition was noncompetitive with respect to tyrosine (Ki = 2.0 ± 0.1 mM) and uncompetitive with respect to α-ketoglutarate (Ki = 8.4 ± 1.5 mM). The inhibition of TAT was also reflected in a marked decrease in the rate of oxidation of tyrosine by liver slices, an increase in tyrosine levels of liver, and also a twofold increase in the dopa and dopamine contents of brain in l -ODAP-injected black mice. The dopa and dopamine contents in the brain of only l -ODAP-injected white mice did not show any change, whereas levels of these compounds were much higher in tyrosine-pretreated animals. Also, the radioactivity associated with tyrosine, dopa, and dopamine arising from [14C]tyrosine was twofold higher in both liver and brain of l -ODAP-treated black mice. Thus, a transient increase in tyrosine levels following the inhibition of hepatic TAT by l -ODAP and its increased availability for the enhanced synthesis of dopa and dopamine and other likely metabolites (toxic?) resulting therefrom could be the mechanism of neurotoxicity and may even underlie the species differences in susceptibility to this neurotoxin.  相似文献   
95.
96.
Pyruvate kinase (PKLR) is a critical erythrocyte enzyme that is required for glycolysis and production of ATP. We have shown that Pklr deficiency in mice reduces the severity (reduced parasitemia, increased survival) of blood stage malaria induced by infection with Plasmodium chabaudi AS. Likewise, studies in human erythrocytes infected ex vivo with P. falciparum show that presence of host PK-deficiency alleles reduces infection phenotypes. We have characterized the genetic diversity of the PKLR gene, including haplotype structure and presence of rare coding variants in two populations from malaria endemic areas of Thailand and Senegal. We investigated the effect of PKLR genotypes on rich longitudinal datasets including haematological and malaria-associated phenotypes. A coding and possibly damaging variant (R41Q) was identified in the Thai population with a minor allele frequency of ~4.7%. Arginine 41 (R41) is highly conserved in the pyruvate kinase family and its substitution to Glutamine (R41Q) affects protein stability. Heterozygosity for R41Q is shown to be associated with a significant reduction in the number of attacks with Plasmodium falciparum, while correlating with an increased number of Plasmodium vivax infections. These results strongly suggest that PKLR protein variants may affect the frequency, and the intensity of malaria episodes induced by different Plasmodium parasites in humans living in areas of endemic malaria.  相似文献   
97.
Olfactory sensory neurons connect to the antennal lobe of the fly to create the primary units for processing odor cues, the glomeruli. Unique amongst antennal-lobe neurons is an identified wide-field serotonergic neuron, the contralaterally-projecting, serotonin-immunoreactive deutocerebral neuron (CSDn). The CSDn spreads its termini all over the contralateral antennal lobe, suggesting a diffuse neuromodulatory role. A closer examination, however, reveals a restricted pattern of the CSDn arborization in some glomeruli. We show that sensory neuron-derived Eph interacts with Ephrin in the CSDn, to regulate these arborizations. Behavioural analysis of animals with altered Eph-ephrin signaling and with consequent arborization defects suggests that neuromodulation requires local glomerular-specific patterning of the CSDn termini. Our results show the importance of developmental regulation of terminal arborization of even the diffuse modulatory neurons to allow them to route sensory-inputs according to the behavioural contexts.  相似文献   
98.
Bengal Basin is known for severe arsenic contamination. In the present study, we have isolated six bacteria from the arsenic contaminated surface water of Bengal Basin. 16S rDNA sequence analysis identified them as Microbacterium oleivorans, Acinetobacter soli, Acinetobacter venetianus, Acinetobacter junii, Acinetobacter baumannii, Acinetobacter calcoaceticus. All the isolates possess arsenic accumulation potential and high molecular weight plasmid (>10 kb). PCR amplification indicated the presence of arsenic-resistance genes (arsB and aoxB) either in the genome or plasmid or in both in the isolated bacteria (except in Acinetobacter venetianus). Exposure to arsenic affected bacterial growth and induced alteration in cytoplasmic membrane integrity.  相似文献   
99.
Vesicle trafficking regulates epithelial cell migration by remodeling matrix adhesions and delivering signaling molecules to the migrating leading edge. Membrane fusion, which is driven by soluble N-ethylmaleimide-sensitive factor associated receptor (SNARE) proteins, is an essential step of vesicle trafficking. Mammalian SNAREs represent a large group of proteins, but few have been implicated in the regulation of cell migration. Ykt6 is a unique SNARE existing in equilibrium between active membrane-bound and inactive cytoplasmic pools, and mediating vesicle trafficking between different intracellular compartments. The biological functions of this protein remain poorly understood. In the present study, we found that Ykt6 acts as a negative regulator of migration and invasion of human prostate epithelial cells. Furthermore, Ykt6 regulates the integrity of epithelial adherens and tight junctions. The observed anti-migratory activity of Ykt6 is mediated by a unique mechanism involving the expressional upregulation of microRNA 145, which selectively decreases the cellular level of Junctional Adhesion Molecule (JAM) A. This decreased JAM-A expression limits the activity of Rap1 and Rac1 small GTPases, thereby attenuating cell spreading and motility. The described novel functions of Ykt6 could be essential for the regulation of epithelial barriers, epithelial repair, and metastatic dissemination of cancer cells.  相似文献   
100.
The ability of Mycobacterium tuberculosis (M. tuberculosis) to accumulate lipid-rich molecules as an energy source obtained from host cell debris remains interesting. Additionally, the potential of M. tuberculosis to survive under different stress conditions leading to its dormant state in pathogenesis remains elusive. The exact mechanism by which these lipid bodies generated in M. tuberculosis infection and utilized by bacilli inside infected macrophage for its survival is still not understood. In this, during bacillary infection, many metabolic pathways are involved that influence the survival of M. tuberculosis for their own support. However, the exact energy source derived from infecting host cells remain elusive. Therefore, this study highlights several alternative energy sources in the form of triacylglycerol (TAG) and fatty acids, i.e. oleic acids accumulation, which are essential in dormancy-like state under M. tuberculosis infection. The prominent stage in tuberculosis (TB) infection is re-establishment of M. tuberculosis under stress conditions and deployment of a confined strategy to utilize these biomolecules for its persistence survival. So, growing in our understanding of these pathways will help us in accelerating therapies, which could reduce TB prevalence world widely.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号