首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5718篇
  免费   485篇
  国内免费   4篇
  2023年   30篇
  2022年   78篇
  2021年   146篇
  2020年   62篇
  2019年   75篇
  2018年   102篇
  2017年   81篇
  2016年   149篇
  2015年   227篇
  2014年   239篇
  2013年   307篇
  2012年   424篇
  2011年   348篇
  2010年   233篇
  2009年   189篇
  2008年   299篇
  2007年   303篇
  2006年   258篇
  2005年   232篇
  2004年   227篇
  2003年   183篇
  2002年   169篇
  2001年   185篇
  2000年   162篇
  1999年   129篇
  1998年   52篇
  1997年   44篇
  1996年   28篇
  1995年   38篇
  1994年   36篇
  1993年   35篇
  1992年   92篇
  1991年   77篇
  1990年   80篇
  1989年   84篇
  1988年   61篇
  1987年   62篇
  1986年   68篇
  1985年   68篇
  1984年   54篇
  1983年   49篇
  1982年   40篇
  1981年   28篇
  1980年   31篇
  1979年   42篇
  1978年   31篇
  1976年   27篇
  1975年   27篇
  1974年   34篇
  1973年   36篇
排序方式: 共有6207条查询结果,搜索用时 281 毫秒
31.
Solution structure of the chromomycin-DNA complex   总被引:8,自引:0,他引:8  
X L Gao  D J Patel 《Biochemistry》1989,28(2):751-762
The structure of the chromomycin-DNA complex at the deoxyoctanucleotide duplex level has been determined from one- and two-dimensional proton NMR studies in Mg-containing aqueous solution. The NMR results demonstrate that the antitumor agent binds as a symmetrical dimer to the self-complementary d[T-T-G-G-C-C-A-A] duplex with retention of the 2-fold symmetry in the complex. A set of intermolecular nuclear Overhauser enhancements (NOEs) establishes that two chromomycin molecules in the dimer share the minor groove at the G-G-C-C.G-G-C-C segment in such a way that each hydrophilic edge of the chromophore is located next to the G-G.C-C half-site and each C-D-E trisaccharide chain extends toward the 3'-direction of the octanucleotide duplex. In addition, the A-B disaccharide segment and the hydrophilic side chain of the antitumor agent are directed toward the phosphate backbone. The observed changes in nucleic acid NOEs and coupling patterns on complex formation establish a transition to a wider and shallower minor groove at the central G-G-C-C.G-G-C-C segment required for accommodating the chromomycin dimer. The present demonstration that chromomycin binds as a dimer and switches the conformation of the DNA at its G.C-rich minor groove binding site provides new insights into antitumor agent design and the sequence specificity of antitumor agent-DNA recognition.  相似文献   
32.
Proton and phosphorus NMR studies are reported for two complementary nonanucleotide duplexes containing acyclic abasic sites. The first duplex, d(C-A-T-G-A-G-T-A-C).d(G-T-A-C-P-C-A-T-G), contains an acyclic propanyl moiety, P, located opposite a deoxyadenosine at the center of the helix (designated APP 9-mer duplex). The second duplex, d(C-A-T-G-A-G-T-A-C).d(G-T-A-C-E-C-A-T-G), contains a similarly located acyclic ethanyl moiety, E (designated APE 9-mer duplex). The ethanyl moiety is one carbon shorter than the natural carbon-phosphodiester backbone of a single nucleotide unit of DNA. The majority of the exchangeable and nonexchangeable base and sugar protons in both the APP 9-mer and APE 9-mer duplexes, including those at the abasic site, have been assigned by recording and analyzing two-dimensional phase-sensitive NOESY data sets in H2O and D2O solution between -5 and 5 degrees C. These spectroscopic observations establish that A5 inserts into the helix opposite the abasic site (P14 and E14) and stacks between the flanking G4.C15 and G6.C13 Watson-Crick base pairs in both the APP 9-mer and APE 9-mer duplexes. The helix is right-handed at and adjacent to the abasic site, and all glycosidic torsion angles are anti in both 9-mer duplexes. Proton NMR parameters for the APP 9-mer and APE 9-mer duplexes are similar to those reported previously for the APF 9-mer duplex (F = furan) in which a cyclic analogue of deoxyribose was embedded in an otherwise identical DNA sequence [Kalnik, M. W., Chang, C. N., Grollman, A. P., & Patel, D. J. (1988) Biochemistry 27, 924-931]. These proton NMR experiments demonstrate that the structures at abasic sites are very similar whether the five-membered ring is open or closed or whether the phosphodiester backbone is shortened by one carbon atom. Phosphorus spectra of the APP 9-mer and APE 9-mer duplexes (5 degrees C) indicate that the backbone conformation is similarly perturbed at three phosphodiester backbone torsion angles. These same torsion angles are also distorted in the APF 9-mer but assume a different conformation than those in the APP 9-mer and APE 9-mer duplexes.  相似文献   
33.
High-resolution homonuclear and heteronuclear two-dimensional NMR studies have been carried out on the self-complementary d(C-C-G-C-G-A-A-T-T-C-C-G-G) duplex (designated GCG 13-mer) in aqueous solution. This sequence contains an extra cytidine located between residues G3 and G4 on each strand of the duplex. The exchangeable and nonexchangeable proton resonances have been assigned from an analysis of two-dimensional nuclear Overhauser enhancement (NOESY) and correlated (COSY and relay COSY) spectra for the GCG 13-mer duplex in H2O and D2O solution. The extra cytidine at the bulge site (designated CX) results in more pronounced changes in the NOE distance connectivities for the G3-CX-G4 segment centered about the CX residue compared to the C9-C10 segment on the partner strand opposite the CX residue for the GCG 13-mer duplex at 25 degrees C. The cross-peak intensities in the short mixing time NOESY spectrum also establish that all glycosidic torsion angles including that of CX are anti in the GCG 13-mer duplex at 25 degrees C. The observed chemical shift changes for the CX base protons and the G3pCX phosphorus resonance with temperature between 0 and 40 degrees C demonstrate a temperature-dependent conformational equilibrium in the premelting transition region. The NOE and chemical shift parameters establish that the predominant conformation at low temperature (0 degree C) has the extra cytidine looped out of the helix with the flanking G3.C10 and G4.C9 base pairs stacked on each other. These results support conclusions based on earlier one-dimensional NMR studies of extra cytidine containing complementary duplexes in aqueous solution [Morden, K. M., Chu, Y. G., Martin, F. H., & Tinoco, I., Jr. (1983) Biochemistry 22, 5557-5563. Woodson, S. A., & Crothers, D. M. (1987) Biochemistry 26, 904-912]. By contrast, the chemical shift and NOE parameters demonstrate that the conformational equilibrium shifts toward a structure with a stacked extra cytidine on raising the temperature to 40 degrees C prior to the helix-coil melting transition. The most downfield shifted phosphorus resonance in the GCG 13-mer duplex has been assigned to the phosphate in the C2-G3 step, and this observation demonstrates that the perturbation in the phosphodiester backbone extends to regions removed from the (G3-CX-G4).(C9-C10) bulge site.  相似文献   
34.
C de los Santos  M Rosen  D Patel 《Biochemistry》1989,28(18):7282-7289
High-resolution exchangeable proton two-dimensional NMR spectra have been recorded on 11-mer DNA triple helices containing one oligopurine (R)n and two oligopyrimidine (Y)n strands at acidic pH and elevated temperatures. Our two-dimensional nuclear Overhauser effect studies have focused on an 11-mer triplex where the third oligopyrimidine strand is parallel to the oligopurine strand. The observed distance connectivities establish that the third oligopyrimidine strand resides in the major groove with the triplex stabilized through formation of T.A.T and C.G.C+ base triples. The T.A.T base triple can be monitored by imino protons of the thymidines involved in Watson-Crick (13.65-14.25 ppm) and Hoogsteen (12.9-13.55 ppm) pairing, as well as the amino protons of adenosine (7.4-7.7 ppm). The amino protons of the protonated (8.5-10.0 ppm) and unprotonated (6.5-8.3 ppm) cytidines in the C.G.C+ base triple provide distinct markers as do the imino protons of the guanosine (12.6-13.3 ppm) and the protonated cytidine (14.5-16.0 ppm). The upfield chemical shift of the adenosine H8 protons (7.1-7.3 ppm) establishes that the oligopurine strand adopts an A-helical base stacking conformation in the 11-mer triplex. These results demonstrate that oligonucleotide triple helices can be readily monitored by NMR at the individual base-triple level with distinct markers differentiating between Watson-Crick and Hoogsteen pairing. Excellent exchangeable proton spectra have also been recorded for (R+)n.(Y-)n.(Y+)n 7-mer triple helices with the shorter length permitting spectra to be recorded at ambient temperature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
35.
An unusual nucleolar organizer region (double NOR) on chromosome 13 was observed in a Down syndrome child [47, XY, +21, dNOR(13)]. The variant chromosome was inherited from the mother [46, XX, dNOR(13)]. The extra chromosome 21 in the proband was maternal origin. The frequency of NOR chromosome association showed relatively high frequency in the mother and proband as compared to the controls. The result suggest that chromosome variants involving extra copies of NOR may indeed be involved in the meiotic nondisjunction of chromosome-21.  相似文献   
36.
The pathway for the aerobic catabolism of 1,3,5-trihydroxybenzene (phloroglucinol) by a new strain of Penicillium was investigated using both in vivo and in vitro cell-free systems. The fungal strain was isolated by enrichment on phloroglucinol and identified as P. simplicissimum (Oud) Thom. It grew optimally at pH 5.5 and 27°C with 119 mM (1.5%w/v) of phloroglucinol in a basal mineral salts medium. Vapours of the crystalline substrate placed in a Petri-plate lid supported the growth of the fungal colonies on the agar surface. Mycelia grown on phloroglucinol accumulated 1,2,4-trihydroxybenzene and resorcinol in the medium. Washed, resting mycelia grown on phloroglucinol, when resuspended in a buffer utilized oxygen in the presence of catechol, resorcinol, pyrogallol and phloroglucinol. A NADPH-dependent reductase in the cell-free extract reduced phloroglucinol to dihydrophloroglucinol. This electron donor could not be replaced by NADH. Resorcinol hydroxylase, phloroglucinol reductase, catechol-1,2-oxygenase, and catechol-2,3-oxygenase were detected in cell-free extracts of mycelia grown on phloroglucinol. The possible steps in the degradation of phloroglucinol are discussed.  相似文献   
37.
Three polymorphisms at the D17S29 locus   总被引:3,自引:0,他引:3       下载免费PDF全文
  相似文献   
38.
The effect ofl-ascorbic acid on the biosynthesis of aflatoxin inAspergillus parasiticus was studied. Ascorbic acid at lower concentrations did not inhibit the growth of fungus but markedly induced aflatoxin biosynthesis. At a concentration of 1000 ppm of ascorbic acid, 4.8-fold higher levels of aflatoxin were detected. Copper did not enhance the induction of toxin synthesis by ascorbic acid when added to the growth medium. Ascorbic acid at 1000 ppm was also found to induce aflatoxin synthesis in resting mycelia. Chloroform (1% vol/vol) was found to induce aflatoxin synthesis under similar conditions. Ascorbic acid in the presence of ferrous ion can cause lipid peroxidation, which in turn is responsible for the induction of aflatoxin synthesis. During the induction of aflatoxin synthesis by ascorbic acid, the uptake of carbon source (acetate) was not affected. This observation suggests that on ascorbic acid treatment a precursor or an intermediate of aflatoxin biosynthesis is synthesized in vivo and is responsible for the higher levels of toxin without increasing the uptake of acetate.  相似文献   
39.
(1) We [Muir, Offord & Davies (1986) Biochem. J. 237, 631-637 and Davies, Muir & Offord (1986) Biochem. J. 240, 609-612] have previously identified a major product in the degradation of insulin by insulin proteinase (the N-terminal fragment produced by cleavage between residues LeuA13 and TyrA14, SerB9 and HisB10) together with evidence for a minor cleavage site between HisB10 and LeuB11 or between LeuB11 and ValB12. (2) We now present evidence for minor sites of cleavage between TyrA14 and GlnA15, GluB13 and AlaB14 as well as HisB10 and LeuB11.  相似文献   
40.
The effect of ascorbic acid on growth and shoot formation in callus cultures of tobacco (Nicotiana tabacum L.) was investigated, using young (4–12 subcultures) and old (more than 30 subcultures) tissue. It was found that ascorbate, at levels of 4–8×10-4M, enhanced shoot formation in both young and old callus. Treatment with ascorbate also speeded up the shoot-forming process. In addition, ascorbate completely reversed the inhibition of shoot formation by gibberellic acid in young callus, but was less effective in old callus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号