首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   9篇
  2023年   4篇
  2022年   5篇
  2021年   16篇
  2020年   4篇
  2019年   4篇
  2018年   10篇
  2017年   4篇
  2016年   9篇
  2015年   11篇
  2014年   11篇
  2013年   21篇
  2012年   23篇
  2011年   28篇
  2010年   13篇
  2009年   8篇
  2008年   6篇
  2007年   10篇
  2006年   4篇
  2005年   5篇
  2004年   1篇
  2001年   1篇
排序方式: 共有198条查询结果,搜索用时 31 毫秒
41.
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) has been reported for precise genome modification in many plants. In the current study, we demonstrate a successful mutation in phytoene desaturase (RAS-PDS) of banana cv. Rasthali using the CRISPR/Cas9 system. Two PDS genes were isolated from Rasthali (RAS-PDS1 and RAS-PDS2), and their protein sequence analysis confirmed that both PDS comprises conserved motifs for enzyme activity. Phylogenetic analysis of RAS-PDS1 and RAS-PDS2 revealed a close evolutionary relationship with other monocot species. The tissue-specific expression profile of RAS-PDS1 and RAS-PDS2 in Rasthali suggested differential regulation of the genes. A single 19-bp guide RNA (gRNA) was designed to target the conserved region of these two RAS-PDS and transformed with Cas9 in embryogenic cell suspension (ECS) cultures of cv. Rasthali. Complete albino and variegated phenotype were observed among regenerated plantlets. DNA sequencing of 13 plants confirmed the indels with 59% mutation frequency in RAS-PDS, suggesting activation of the non-homologous end-joining (NHEJ) pathway. The majority of mutations were either insertion (1–5) or deletion (1–4) of nucleotides near to protospacer adjacent motif (PAM). These mutations have created stop codons in RAS-PDS sequences which suggest premature termination of RAS-PDS protein synthesis. The decreased chlorophyll and total carotenoid contents were detected in mutant lines that revealed the functional disruption of both RAS-PDS genes. Our results demonstrate that genome editing through CRISPR/Cas9 can be applied as an efficient tool for banana genome modification.  相似文献   
42.
De-embryonated cotyledon explants of peanut were co-cultivated under different conditions with Agrobacterium tumefaciens harbouring pIG121hm plasmid carrying intron-containing β-glucuronidase as a reporter while hygromycin phosphotransferase and neomycin phosphotransferase as selectable marker genes. Co-cultivation duration and temperature, various antioxidants and their concentrations, bacterial strains and explant characteristics (incised and non-incised) were examined either alone or in combinations for optimization of transient expression of the reporter gene. Up to 81% transformation was recorded when non-incised explants were co-cultivated with strain EHA101 for 5 days at 21°C on shoot induction medium containing 100 mg/L l-cysteine. Addition of the optimized concentration of augmentin (200 mg/L) along with cefotaxime (200 mg/L) to the shoot induction medium not only effectively eliminated bacterial growth, but also facilitated high frequency of shoot induction. The 40 mg/L hygromycin concentration prevented complete shoot regeneration of non-transgenic explants thus considered for the regeneration of transgenics. Resistant shoots were successfully transferred to soil either by grafting or in vitro rooting. Survival rate of the grafted shoots was nearly 100% in glass-house conditions. The optimized protocol took around 3 months to generate healthy plants. Polymerase chain reaction, Southern blot hybridization, histochemical tests, segregation and hygromycin-leaf assays of selected transgenic plants showed integration of the transgene into peanut genome. No chimeras were noticed during the study.  相似文献   
43.
Invasive Salmonella has been reported to induce apoptosis of macrophages as part of its infection process, which may allow it to avoid detection by the innate immune system. However, the induction of apoptosis under the different host environments remains to be examined, including the oxidative stress experienced by pathogens in the macrophage milieu. To simulate in vivo oxidative conditions, Salmonella enterica serovar Typhi was grown in the presence of hydrogen peroxide and its ability to induce apoptosis of murine macrophages was assessed. Analysis of data revealed that oxidative stressed S. Typhi caused apoptotic cell death in 51% of macrophages, whereas S. Typhi grown under normal conditions accounted for apoptotic cell death in only 32% of macrophages. A significant increase in the levels of oxidants and decrease in the antioxidant was also observed which correlated with the increased generation of tumour necrosis factor alpha, interleukin-1alpha and interleukin-6. These results suggest that tumour necrosis factor alpha in conjunction with other cytokines may induce apoptotic cell death through the up-regulation of lipid peroxidation and down-regulation of superoxide dismutase. This finding may help us to understand better the host-pathogen interactions and may be of clinical importance in the development of preventive intervention against infection.  相似文献   
44.
A synthetic DNA construct containing cholera toxin B subunit, genetically fused to the surface glycoprotein of rabies virus was expressed in tobacco plants from a seed specific (legumin) promoter. Seed specific expression was monitored by real-time PCR, GM1-ELISA and Western blot analyses. The fusion protein accumulated in tobacco seeds at up to 1.22% of the total seed protein. It was functionally active in binding to the GM1-ganglioside receptors, suggesting its assembly into pentamers in seeds of the transgenic plants. Immunoblot analysis confirmed that the ~80.6 kDa monomeric fusion polypeptide was expressed in tobacco seeds and accumulated as a ~403 kDa pentamer. Evaluation of its immunoprotective ability against rabies and cholera is to be examined.  相似文献   
45.
A series of pyranocoumarin derivatives were synthesized and evaluated in vivo for their anti-hyperglycemic as well as anti-dyslipidemic activities. Compounds 7a, 7c, 8a, 8b, 8c, 8e and 8f have shown promising anti-hyperglycemic activities in sucrose loaded model (SLM) as well as sucrose challenged streptozotocin induced diabetic rat model (STZ). Compounds 8a and 8b were showing 38.0% and 42.0% blood glucose lowering activity in db/db mice model. In vitro anti-hyperglycemic activity evaluation exhibited that compounds 8a (IC50 = 24.5 μM) and 8b (IC50 = 36.2 μM) are potential PTP-1B inhibitors thereby revealing their possible mechanism of anti-diabetic action. Compounds 7a, 7b, 8a, 8b, 8d, 8e and 8f have shown significant anti-dyslipidemic activity in triton induced dyslipidemia in rats.  相似文献   
46.
The lysyl oxidase (LOX) gene encodes an enzyme (LOX) critical for extracellular matrix maturation. The LOX gene has also been shown to inhibit the transforming activity of Ras oncogene signaling. In particular, the pro-peptide domain (LOX-PP) released from the secreted precursor protein (Pro-LOX) was found to inhibit the transformed phenotype of breast, lung, and pancreatic cancer cells. However, the mechanisms of action of LOX-PP remained to be determined. Here, the ability of LOX-PP to attenuate the integrin signaling pathway, which leads to phosphorylation of focal adhesion kinase (FAK), and the activation of its downstream target p130Cas, was determined. In NF639 breast cancer cells driven by Her-2/neu, which signals via Ras, ectopic Pro-LOX and LOX-PP expression inhibited fibronectin-stimulated protein tyrosine phosphorylation. Importantly, phosphorylation of FAK on Tyr-397 and Tyr-576, and p130Cas were substantially reduced. The amount of endogenous p130Cas in the Triton X-100-insoluble protein fraction, and fibronectin-activated haptotaxis were decreased. Interestingly, expression of mature LOX enzyme enhanced fibronectin-stimulated integrin signaling. Of note, treatment with recombinant LOX-PP selectively reduced fibronectin-mediated haptotaxis of NF639, MDA-MB-231, and Hs578T breast cancer cells. Thus, evidence is provided that one mechanism of action of LOX-PP tumor suppression is to block fibronectin-stimulated signaling and cell migration.The lysyl oxidase (LOX)2 gene family is comprised of five members LOX, LOXL1, LOXL2, LOXL3, and LOXL4, which encode enzymes that modify extracellular matrix (ECM) proteins to promote their cross-linking and deposition (1). The LOX gene is the best characterized and codes for the synthesis of a secreted 50-kDa glycosylated pro-enzyme (Pro-LOX). Pro-LOX is extracellularly processed by proteolytic cleavage to a mature active 32-kDa enzyme (LOX) and an 18-kDa pro-peptide (LOX-PP) by the procollagen C proteinases bone morphogenic protein-1 (BMP-1), and the related tolloid-like proteins TLL1 and TLL2 (24). In murine Pro-LOX, proteolytic processing occurs between amino acids Gly-162 and Asp-163, generating LOX-PP containing 141 amino acids (5). LOX-PP contains two consensus N-glycosylation sites, Asn-91 and Asn-138 (murine sequence) (2) and several O-glycosylation sites.3 LOX-PP does not contain any known protein domains, and structural prediction analysis indicates that LOX-PP assembles as an intrinsically disordered protein (6). Among the LOX family members, the C-terminal ends encode the enzyme domain and are highly conserved, whereas the N-terminal ends that encode the pro-peptide region have variable sequences. Based on structural and sequence similarities of the pro-peptide regions, the LOX family members can be divided into two subgroups: LOXL2, LOXL3, and LOXL4 as one group whose propeptide regions contain four scavenger receptor cysteine-rich domains, and LOX and LOXL1 as a separate group with much simpler and smaller pro-peptide region containing no cysteine residues (reviewed in Ref. 1). In contrast to Pro-LOX, the exact maturation site of Pro-LOXL1 is still unidentified.LOX is essential in the formation of blood vessels and in maintaining their normal characteristics (79). Up-regulation of LOX expression has been described in stromal cells that surround ductal breast and broncho-pulmonary carcinomas (10).Expression of the LOX gene was found to inhibit the transforming activity of the Ras oncogene in NIH 3T3 fibroblasts and hence was named the “ras recision” gene (rrg) (11, 12). The LOX gene was shown to inhibit growth in soft agar of NIH 3T3 fibroblasts and to attenuate Ras-mediated activation of phosphatidylinositol 3-kinase (PI3K), Akt, and Erk1/2 kinases and NF-κB activation (13). More recently, the rrg activity was mapped to the 18-kDa LOX-PP. Specifically, LOX-PP was shown to inhibit Ras-mediated transformation of fibroblasts as determined by reduced growth in soft agar, localization of PDK1 to the membrane, and activation of NF-κB (14). Furthermore, the inhibitory effects of LOX-PP on Ras signaling were extended to breast, pancreatic, and lung cancer cells (6, 14, 15). LOX-PP expression in these carcinoma cells reverted Her-2/neu- and Ras-mediated epithelial to mesenchymal transition (EMT), leading to increased expression of E-cadherin and γ-catenin, and reduced levels of Snail, vimentin, and/or BCL-2 (7, 15). Furthermore, LOX-PP expression reduced tumor formation in a xenograft model by Her-2/neu-overexpressing NF639 cells (6).Acquisition of the ability to invade the ECM is essential to EMT. The ECM has multiple mechanical and signaling functions. The ECM defines interfaces between tissues, provides a scaffold for cell traction, and a substrate for cell migration and adhesion. It is composed of a complex of proteins such as collagens, fibronectin, and laminin, which can interact and bind various growth factors (16). Fibronectin is of particular interest because it was recently shown to interact with the C terminus of Pro-LOX (17). Binding of fibronectin to its receptors (e.g. integrins α5β1 or αvβ1) stimulates the tyrosine phosphorylation of cellular proteins, in particular that of focal adhesion kinase (FAK) (18). Little is known about the mechanism of action of LOX-PP. Here, we have asked whether the tumor suppressor activity of LOX-PP attenuates the activation of the integrin signaling pathway in breast cancer cells. We report that LOX-PP attenuates FAK signaling and activation of its downstream target p130Cas and is a robust inhibitor of fibronectin-stimulated cell migration.  相似文献   
47.
Thoracic aortic aneurysms and dissections (TAAD) cause significant morbidity and mortality, but the genetic origins of TAAD remain largely unknown. In a genome-wide analysis of 418 sporadic TAAD cases, we identified 47 copy number variant (CNV) regions that were enriched in or unique to TAAD patients compared to population controls. Gene ontology, expression profiling, and network analysis showed that genes within TAAD CNVs regulate smooth muscle cell adhesion or contractility and interact with the smooth muscle-specific isoforms of α-actin and β-myosin, which are known to cause familial TAAD when altered. Enrichment of these gene functions in rare CNVs was replicated in independent cohorts with sporadic TAAD (STAAD, n = 387) and inherited TAAD (FTAAD, n = 88). The overall prevalence of rare CNVs (23%) was significantly increased in FTAAD compared with STAAD patients (Fisher's exact test, p = 0.03). Our findings suggest that rare CNVs disrupting smooth muscle adhesion or contraction contribute to both sporadic and familial disease.  相似文献   
48.
Mammalian gastric lipases are stable and active under acidic conditions and also in the duodenal lumen. There has been considerable interest in acid stable lipases owing to their potential application in the treatment of pancreatic exocrine insufficiency. In order to gain insights into the domain movements of these enzymes, molecular dynamics simulations of human gastric lipase was performed at an acidic pH and under neutral conditions. For comparative studies, simulation of dog gastric lipase was also performed at an acidic pH. Analyses show, that in addition to the lid region, there is another region of high mobility in these lipases. The potential role of this novel region is discussed.  相似文献   
49.
50.
Sexual intercourse is the major means of HIV transmission, yet the impact of semen on HIV infection of CD4(+) T cells remains unclear. To resolve this conundrum, we measured CD4(+) target cell infection with X4 tropic HIV IIIB and HC4 and R5 tropic HIV BaL and SF162 after incubation with centrifuged seminal plasma (SP) from HIV-negative donors and assessed the impact of SP on critical determinants of target cell susceptibility to HIV infection. We found that SP potently protects CD4(+) T cells from infection with X4 and R5 tropic HIV in a dose- and time-dependent manner. SP caused a diminution in CD4(+) T cell surface expression of the HIVR CD4 and enhanced surface expression of the HIV coreceptor CCR5. Consequently, SP protected CD4(+) T cells from infection with R5 tropic HIV less potently than it protected CD4(+) T cells from infection with X4 tropic HIV. SP also reduced CD4(+) T cell activation and proliferation, and the magnitude of SP-mediated suppression of target cell CD4 expression, activation, and proliferation correlated closely with the magnitude of the protection of CD4(+) T cells from infection with HIV. Taken together, these data show that semen protects CD4(+) T cells from HIV infection by restricting critical determinants of CD4(+) target cell susceptibility to HIV infection. Further, semen contributes to the selective transmission of R5 tropic HIV to CD4(+) target cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号