首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  免费   10篇
  2023年   4篇
  2022年   5篇
  2021年   16篇
  2020年   4篇
  2019年   4篇
  2018年   10篇
  2017年   6篇
  2016年   10篇
  2015年   13篇
  2014年   14篇
  2013年   21篇
  2012年   24篇
  2011年   28篇
  2010年   13篇
  2009年   8篇
  2008年   7篇
  2007年   10篇
  2006年   4篇
  2005年   5篇
  2004年   1篇
  2001年   1篇
  1985年   1篇
  1976年   1篇
排序方式: 共有210条查询结果,搜索用时 31 毫秒
141.
Park  Myung Hee  Kar  Rajesh Kumar  Banka  Siddharth  Ziegler  Alban  Chung  Wendy K. 《Amino acids》2022,54(4):485-499

Hypusine [Nε-(4-amino-2-hydroxybutyl)lysine] is a derivative of lysine that is formed post-translationally in the eukaryotic initiation factor 5A (eIF5A). Its occurrence at a single site in one cellular protein defines hypusine synthesis as one of the most specific post-translational modifications. Synthesis of hypusine involves two enzymatic steps: first, deoxyhypusine synthase (DHPS) cleaves the 4-aminobutyl moiety of spermidine and transfers it to the ε-amino group of a specific lysine residue of the eIF5A precursor protein to form an intermediate, deoxyhypusine [Nε-(4-aminobutyl)lysine]. This intermediate is subsequently hydroxylated by deoxyhypusine hydroxylase (DOHH) to form hypusine in eIF5A. eIF5A, DHPS, and DOHH are highly conserved in all eukaryotes, and both enzymes exhibit a strict specificity toward eIF5A substrates. eIF5A promotes translation elongation globally by alleviating ribosome stalling and it also facilitates translation termination. Hypusine is required for the activity of eIF5A, mammalian cell proliferation, and animal development. Homozygous knockout of any of the three genes, Eif5a, Dhps, or Dohh, leads to embryonic lethality in mice. eIF5A has been implicated in various human pathological conditions. A recent genetic study reveals that heterozygous germline EIF5A variants cause Faundes–Banka syndrome, a craniofacial–neurodevelopmental malformations in humans. Biallelic variants of DHPS were identified as the genetic basis underlying a rare inherited neurodevelopmental disorder. Furthermore, biallelic DOHH variants also appear to be associated with neurodevelopmental disorder. The clinical phenotypes of these patients include intellectual disability, developmental delay, seizures, microcephaly, growth impairment, and/or facial dysmorphisms. Taken together, these findings underscore the importance of eIF5A and the hypusine modification pathway in neurodevelopment in humans.

  相似文献   
142.
We used multiple approaches to investigate the role of Rab6 relative to Zeste White 10 (ZW10), a mitotic checkpoint protein implicated in Golgi/endoplasmic reticulum (ER) trafficking/transport, and conserved oligomeric Golgi (COG) complex, a putative tether in retrograde, intra-Golgi trafficking. ZW10 depletion resulted in a central, disconnected cluster of Golgi elements and inhibition of ERGIC53 and Golgi enzyme recycling to ER. Small interfering RNA (siRNA) against RINT-1, a protein linker between ZW10 and the ER soluble N-ethylmaleimide-sensitive factor attachment protein receptor, syntaxin 18, produced similar Golgi disruption. COG3 depletion fragmented the Golgi and produced vesicles; vesicle formation was unaffected by codepletion of ZW10 along with COG, suggesting ZW10 and COG act separately. Rab6 depletion did not significantly affect Golgi ribbon organization. Epistatic depletion of Rab6 inhibited the Golgi-disruptive effects of ZW10/RINT-1 siRNA or COG inactivation by siRNA or antibodies. Dominant-negative expression of guanosine diphosphate-Rab6 suppressed ZW10 knockdown induced-Golgi disruption. No cross-talk was observed between Rab6 and endosomal Rab5, and Rab6 depletion failed to suppress p115 (anterograde tether) knockdown-induced Golgi disruption. Dominant-negative expression of a C-terminal fragment of Bicaudal D, a linker between Rab6 and dynactin/dynein, suppressed ZW10, but not COG, knockdown-induced Golgi disruption. We conclude that Rab6 regulates distinct Golgi trafficking pathways involving two separate protein complexes: ZW10/RINT-1 and COG.  相似文献   
143.
Flower senescence is the terminal phase of developmental processes that lead to the death of flower, which include, flower wilting, shedding of flower parts and fading of blossoms. Since it is a rapid process as compared to the senescence of other parts of the plant it therefore provides excellent model system for the study of senescence. During flower senescence, developmental and environmental stimuli enhance the upregulation of catabolic processes causing breakdown and remobilization of cellular constituents. Ethylene is well known to play regulatory role in ethylene-sensitive flowers while in ethylene-insensitive flowers abscisic acid (ABA) is thought to be primary regulator. Subsequent to perception of flower senescence signal, death of petals is accompanied by the loss of membrane permeability, increase in oxidative and decreased level of protective enzymes. The last stages of senescence involve the loss of of nucleic acids (DNA and RNA), proteins and organelles, which is achieved by activation of several nucleases, proteases and wall modifiers. Environmental stimuli such as pollination, drought and other stresses also affect senescence by hormonal imbalance. In this article we have covered the following: perception mechanism and specificity of flower senescence, flower senescence-associated events, like degradation of cell membranes, proteins and nucleic acids, environmental/external factors affecting senescence, like pollination and abiotic stress, hormonal and non-hormonal regulation of flower/petal senescence and finally the senescence associated genes (SAGs) have also been described.Key Words: environmental factors, ethylene, flowers, petals, plant hormones, pollination, programmed cell death, senescence, senescence-associated genes  相似文献   
144.
Polysulfone (Psf) hollow fiber membranes (HFMs) have been widely used in blood purification but their biocompatibility remains a concern. To enhance their biocompatibility, Psf/TPGS (d-α-tocopheryl polyethylene glycol 1000 succinate) composite HFMs and 2-methacryloyloxyethyl phosphorylcholine (MPC) coated Psf HFMs have been prepared. They have been evaluated for in vivo biocompatibility and graft acceptance and compared with sham and commercial membranes by intra-peritoneal implantation in rats at day 7 and 21. Normal body weights, tissue formation and angiogenesis indicate acceptance of implants by the animals. Hematological observations show presence of post-surgical stress which subsides over time. Serum biochemistry results reveal normal organ function and elevated liver ALP levels at day 21. Histological studies exhibit fibroblast recruitment cells, angiogenesis and collagen deposition at the implant surface indicating new tissue formation. Immuno-histochemistry studies show non-activation of MHC molecules signifying biocompatibilty. Additionally, Psf/TPGS exhibit most favorable tissue response as compared with other HFMs making them the material of choice for HFM preparation for hemodialysis applications.  相似文献   
145.
Suri S  Watts DJ 《PloS one》2011,6(3):e16836
A longstanding idea in the literature on human cooperation is that cooperation should be reinforced when conditional cooperators are more likely to interact. In the context of social networks, this idea implies that cooperation should fare better in highly clustered networks such as cliques than in networks with low clustering such as random networks. To test this hypothesis, we conducted a series of web-based experiments, in which 24 individuals played a local public goods game arranged on one of five network topologies that varied between disconnected cliques and a random regular graph. In contrast with previous theoretical work, we found that network topology had no significant effect on average contributions. This result implies either that individuals are not conditional cooperators, or else that cooperation does not benefit from positive reinforcement between connected neighbors. We then tested both of these possibilities in two subsequent series of experiments in which artificial seed players were introduced, making either full or zero contributions. First, we found that although players did generally behave like conditional cooperators, they were as likely to decrease their contributions in response to low contributing neighbors as they were to increase their contributions in response to high contributing neighbors. Second, we found that positive effects of cooperation were contagious only to direct neighbors in the network. In total we report on 113 human subjects experiments, highlighting the speed, flexibility, and cost-effectiveness of web-based experiments over those conducted in physical labs.  相似文献   
146.
Hepatitis delta virus (HDV) infects hepatocytes, the major cell type of the liver. Infection of the liver may be either transient or chronic. The prognosis for patients with chronic HDV infection is poor, with a high risk of cirrhosis and hepatocellular carcinoma. The best antiviral therapy is weekly administration for at least one year of high doses of interferon alpha. This efficacy of interferon therapy has been puzzling in that HDV replication in transfected cell lines is reported as insensitive to administration of interferon alpha or gamma. Similarly, this study shows that even when an interferon response was induced by transfection of poly(IC) into a cell line, HDV RNA accumulation was only modestly inhibited. However, when the HDV replication was initiated by infection of primary human hepatocytes, simultaneous addition of interferons alpha or gamma at 600 units/ml, a concentration comparable to that achieved in treated patients, the subsequent HDV RNA accumulation was inhibited by at least 80%. These interferon treatments were shown to produce significant time-dependent increases of host response proteins such as for Stat-1, phosphoStat-1, Mx1/2/3 and PKR, and yet interferon pretreatment of hepatocytes did not confer an increased inhibition of HDV replication over interferon treatment at the time of (or after) infection. These and other data support the interpretation that interferon action against HDV replication can occur and is largely mediated at the level of entry into primary human hepatocytes. Thus in vivo, the success of long-term interferon therapy for chronic HDV, may likewise involve blocking HDV spread by interfering with the initiation of productive infection of naïve hepatocytes.  相似文献   
147.
Using digital holographic cinematography, we quantify and compare the feeding behavior of free-swimming copepods, Acartia tonsa, on nutritional prey (Storeatula major) to that occurring during exposure to toxic and non-toxic strains of Karenia brevis and Karlodinium veneficum. These two harmful algal species produce polyketide toxins with different modes of action and potency. We distinguish between two different beating modes of the copepod's feeding appendages-a "sampling beating" that has short durations (<100 ms) and involves little fluid entrainment and a longer duration "grazing beating" that persists up to 1200 ms and generates feeding currents. The durations of both beating modes have log-normal distributions. Without prey, A. tonsa only samples the environment at low frequency. Upon introduction of non-toxic food, it increases its sampling time moderately and the grazing period substantially. On mono algal diets for either of the toxic dinoflagellates, sampling time fraction is high but the grazing is very limited. A. tonsa demonstrates aversion to both toxic algal species. In mixtures of S. major and the neurotoxin producing K. brevis, sampling and grazing diminish rapidly, presumably due to neurological effects of consuming brevetoxins while trying to feed on S. major. In contrast, on mixtures of cytotoxin producing K. veneficum, both behavioral modes persist, indicating that intake of karlotoxins does not immediately inhibit the copepod's grazing behavior. These findings add critical insight into how these algal toxins may influence the copepod's feeding behavior, and suggest how some harmful algal species may alter top-down control exerted by grazers like copepods.  相似文献   
148.

Background

The integration of host genetics, environmental triggers and the microbiota is a recognised factor in the pathogenesis of barrier function diseases such as IBD. In order to determine how these factors interact to regulate the host immune response and ecological succession of the colon tissue-associated microbiota, we investigated the temporal interaction between the microbiota and the host following disruption of the colonic epithelial barrier.

Methodology/Principal Findings

Oral administration of DSS was applied as a mechanistic model of environmental damage of the colon and the resulting inflammation characterized for various parameters over time in WT and Nod2 KO mice.

Results

In WT mice, DSS damage exposed the host to the commensal flora and led to a migration of the tissue-associated bacteria from the epithelium to mucosal and submucosal layers correlating with changes in proinflammatory cytokine profiles and a progressive transition from acute to chronic inflammation of the colon. Tissue-associated bacteria levels peaked at day 21 post-DSS and declined thereafter, correlating with recruitment of innate immune cells and development of the adaptive immune response. Histological parameters, immune cell infiltration and cytokine biomarkers of inflammation were indistinguishable between Nod2 and WT littermates following DSS, however, Nod2 KO mice demonstrated significantly higher tissue-associated bacterial levels in the colon. DSS damage and Nod2 genotype independently regulated the community structure of the colon microbiota.

Conclusions/Significance

The results of these experiments demonstrate the integration of environmental and genetic factors in the ecological succession of the commensal flora in mammalian tissue. The association of Nod2 genotype (and other host polymorphisms) and environmental factors likely combine to influence the ecological succession of the tissue-associated microflora accounting in part for their association with the pathogenesis of inflammatory bowel diseases.  相似文献   
149.
The micro-eukaryotic diversity from the human gut was investigated using universal primers directed towards 18S rRNA gene, fecal samples being the source of DNA. The subjects in this study included two breast-fed and two formula-milk-fed infants and their mothers. The study revealed that the infants did not seem to harbour any microeukaryotes in their gut. In contrast, there were distinct eukaryotic microbiota present in the mothers. The investigation is the first of its kind in the comparative study of the human feces to reveal the presence of micro-eukaryotic diversity variance in infants and adults from the Indian subcontinent. The micro-eukaryotes encountered during the investigation include known gut colonizers like Blastocystis and some fungi species. Some of these micro-eukaryotes have been speculated to be involved in clinical manifestations of various diseases. The study is an attempt to highlight the importance of micro-eukaryotes in the human gut.  相似文献   
150.
Neurons are chiefly nonrenewable; thus, cytolytic immune strategies to clear or control neurotropic viral infections could have lasting neurologic consequences. IFN-γ is a potent antiviral cytokine that is critical for noncytolytic clearance of multiple neurotropic viral infections, including measles virus (MV); however, the downstream pathways through which IFN-γ functions in neurons have not been defined. Unlike most cell types studied to date in which IFN-γ affects gene expression via rapid and robust activation of STAT1, basal STAT1 levels in primary hippocampal neurons are constitutively low, resulting in attenuated STAT1 activation and consequently slower kinetics of IFN-γ-driven STAT1-dependent gene expression. Given this altered expression and activation of STAT1 in neurons, we sought to determine whether STAT1 was required for IFN-γ-mediated protection from infection in neurons. To do so, we evaluated the consequences of MV challenge of STAT1-deficient mice and primary hippocampal neurons explanted from these mice. Surprisingly, the absence of STAT1 did not restrict the ability of IFN-γ to control viral infection either in vivo or ex vivo. Moreover, the canonical IFN-γ-triggered STAT1 gene expression profile was not induced in STAT1-deficient neurons, suggesting that IFN-γ regulates neuronal STAT1-independent pathways to control viral replication.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号