首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   359篇
  免费   35篇
  2022年   1篇
  2021年   7篇
  2020年   1篇
  2019年   4篇
  2018年   4篇
  2017年   2篇
  2016年   12篇
  2015年   14篇
  2014年   24篇
  2013年   31篇
  2012年   37篇
  2011年   27篇
  2010年   17篇
  2009年   24篇
  2008年   20篇
  2007年   20篇
  2006年   29篇
  2005年   21篇
  2004年   14篇
  2003年   19篇
  2002年   15篇
  2001年   5篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   6篇
  1993年   1篇
  1992年   5篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1984年   3篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有394条查询结果,搜索用时 15 毫秒
101.
MS‐based strategies are key technologies for identifying proteins in proteomic research. Despite significant improvements in recent years efficient fractionation processes of target analytes remain major bottlenecks in MS‐based protein analysis. Immunoaffinity‐based sample fractionation strategies have shown their potential for the enrichment of analyte peptides of interest, but only small numbers of analytes can be quantified in one experiment. The lack of appropriate capture reagents limits the application of immunoaffinity‐based approaches and only biased biomarker discovery approaches are possible. This perspective discusses the current status of immunoaffinity MS‐based approaches and introduces a novel concept that uses group specific anti‐peptide antibodies – Triple X Proteomics Antibodies – for the enrichment of signature peptides. Classes of peptides with identical termini can be fractionated based on TXP immunoaffinity enrichment steps and can subsequently be identified using established tandem MS procedures. Based on bioinformatic algorithms minimal sets of TXP epitopes can be specified, that cover a wide range of given proteome landscapes of one or even several different species. This opens the possibility to use a minimal number of TXP antibodies as a universal toolbox for general immunoaffinity‐based approaches in proteome analysis.  相似文献   
102.
The basidiomycete fungus Piriformospora indica colonizes roots of a broad range of mono- and dicotyledonous plants. It confers enhanced growth, improves resistance against biotic and tolerance to abiotic stress, and enhances grain yield in barley. To analyze mechanisms underlying P. indica-induced improved grain yield in a crop plant, the influence of different soil nutrient levels and enhanced biotic stress were tested under outdoor conditions. Higher grain yield was induced by the fungus independent of different phosphate and nitrogen fertilization levels. In plants challenged with the root rot-causing fungus Fusarium graminearum, P. indica was able to induce a similar magnitude of yield increase as in unchallenged plants. In contrast to the arbuscular mycorrhiza fungus Glomus mosseae, total phosphate contents of host plant roots and shoots were not significantly affected by P. indica. On the other hand, barley plants colonised with the endophyte developed faster, and were characterized by a higher photosynthetic activity at low light intensities. Together with the increased root formation early in development these factors contribute to faster development of ears as well as the production of more tillers per plant. The results indicate that the positive effect of P. indica on grain yield is due to accelerated growth of barley plants early in development, while improved phosphate supply—a central mechanism of host plant fortification by arbuscular mycorrhizal fungi—was not observed in the P. indica-barley symbiosis.  相似文献   
103.
104.
105.
Positron emission tomography-computed tomography (PET-CT) is superior compared to stand-alone PET in evaluation of malignancies. Few studies have employed high-resolution structural information to correct PET. We designed a semiautomatic algorithm using CT and PET to obtain a partial volume corrected (PVC) standardized uptake value (SUV) and a combined morphologic and functional parameter (multimodal SUV) for lymph node assessment. Lesions were segmented by a semiautomatic algorithm in CT images. Lesion volume was used for PVC and for calculating the multimodal SUV. The method was applied to 47 lymph nodes (30 patients) characterized as suspicious in 18F-fluorodeoxyglucose-PET-CT. In phantoms, PVC improved significantly the measured uptake of the lesion. In patients, 36 lymph nodes could be segmented without problems; in 11 lesions, a manual interaction was necessary. SUVs before PVC (mean 1.29) increased significantly (p < .0005) after PVC (mean 2.8). If SUV 2.5 was used as a threshold value to distinguish between benign and malignant lesions, 11 of the 47 lesions changed from benign to malignant after the PVC. The mean multimodal SUV was 0.39 mL for the benign lesions and 4.47 mL for the malignant lesions. In this work we presented a method for quantitative analysis of lymph nodes in PET-CT. PVC leads to significant differences in SUV.  相似文献   
106.
107.
Gerharz T  Reinelt S  Kaspar S  Scapozza L  Bott M 《Biochemistry》2003,42(19):5917-5924
The sensor kinase CitA and the response regulator CitB of Klebsiella pneumoniae form the paradigm of a subfamily of bacterial two-component regulatory systems that are capable of sensing tri- or dicarboxylates in the environment and then induce transporters for the uptake of these compounds. We recently showed that the separated periplasmic domain of CitA, termed CitAP (encompasses residues 45-176 supplemented with an N-terminal methionine residue and a C-terminal hexahistidine tag), is a highly specific citrate receptor with a K(d) of 5.5 microM at pH 7. To identify positively charged residues involved in binding the citrate anion, each of the arginine, lysine, and histidine residues in CitAP was exchanged for alanine, and the resulting 17 muteins were analyzed by isothermal titration calorimetry (ITC). In 12 cases, the K(d) for citrate was identical to that of wild-type CitAP or slightly changed (3.9-17.2 microM). In one case (R98A), the K(d) was 6-fold decreased (0.8 microM), whereas in four cases (R66A, H69A, R107A, and K109A) the K(d) was 38- to >300-fold increased (0.2 to >1 mM). The secondary structure of the latter five proteins in their apo-form as deduced from far-UV circular dichroism (CD) spectra did not differ from the apo-form of wild-type CitAP; however, all of them showed an increased thermostability. Citrate increased the melting point (T(m)) of wild-type CitAP and mutein R98A by 6.2 and 9.5 degrees C, respectively, but had no effect on the T(m) of the four proteins with disturbed binding. Three of the residues important for citrate binding (R66, H69, and R107) are highly conserved in the CitA subfamily of sensor kinases, indicating that they might be involved in ligand binding by many of these sensor kinases.  相似文献   
108.
The gene for an enantioselective amidase was cloned from Rhodococcus erythropolis MP50, which utilizes various aromatic nitriles via a nitrile hydratase/amidase system as nitrogen sources. The gene encoded a protein of 525 amino acids which corresponded to a protein with a molecular mass of 55.5 kDa. The deduced complete amino acid sequence showed homology to other enantioselective amidases from different bacterial genera. The nucleotide sequence approximately 2.5 kb upstream and downstream of the amidase gene was determined, but no indications for a structural coupling of the amidase gene with the genes for a nitrile hydratase were found. The amidase gene was carried by an approximately 40-kb circular plasmid in R. erythropolis MP50. The amidase was heterologously expressed in Escherichia coli and shown to hydrolyze 2-phenylpropionamide, α-chlorophenylacetamide, and α-methoxyphenylacetamide with high enantioselectivity; mandeloamide and 2-methyl-3-phenylpropionamide were also converted, but only with reduced enantioselectivity. The recombinant E. coli strain which synthesized the amidase gene was shown to grow with organic amides as nitrogen sources. A comparison of the amidase activities observed with whole cells or cell extracts of the recombinant E. coli strain suggested that the transport of the amides into the cells becomes the rate-limiting step for amide hydrolysis in recombinant E. coli strains.  相似文献   
109.
110.
Telomeres are specialized structures at the ends of the chromosomes that, with the help of proteins--such as the telomere repeat-binding factor TRF2 -, form protective caps which are essential for chromosomal integrity. Investigating the structure and three-dimensional (3D) distribution of the telomeres and TRF2 in the nucleus, we now show that the telomeres of the immortal HaCaT keratinocytes are distributed in distinct non-overlapping territories within the inner third of the nuclear space in interphase cells, while they extend more widely during mitosis. TRF2 is present at the telomeres at all cell cycle phases. During mitosis additional TRF2 protein concentrates all around the chromosomes. This change in staining pattern correlates with a significant increase in TRF2 protein at the S/G2 transition as seen in Western blots of synchronized cells and is paralleled by a cell cycle-dependent regulation of TRF2 mRNA, arguing for a specific role of TRF2 during mitosis. The distinct territorial localization of telomeres is abrogated in a HaCaT variant that constitutively expresses c-Myc--a protein known to contribute to genomic instability. These cells are characterized by overlapping telomere territories, telomeric aggregates (TAs), that are accompanied by an overall irregular telomere distribution and a reduced level in TRF2 protein. These TAs which are readily detectable in interphase nuclei, are similarly present in mitotic cells, including cells in telophase. Thus, we propose that TAs, which subsequently also cluster their respective chromosomes, contribute to genomic instability by forcing an abnormal chromosome segregation during mitosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号