全文获取类型
收费全文 | 174篇 |
免费 | 9篇 |
国内免费 | 4篇 |
专业分类
187篇 |
出版年
2022年 | 2篇 |
2021年 | 3篇 |
2020年 | 4篇 |
2018年 | 4篇 |
2017年 | 1篇 |
2016年 | 9篇 |
2015年 | 9篇 |
2014年 | 14篇 |
2013年 | 8篇 |
2012年 | 6篇 |
2011年 | 13篇 |
2010年 | 6篇 |
2009年 | 10篇 |
2008年 | 9篇 |
2007年 | 13篇 |
2006年 | 7篇 |
2005年 | 10篇 |
2004年 | 4篇 |
2003年 | 5篇 |
2002年 | 5篇 |
2001年 | 2篇 |
2000年 | 5篇 |
1999年 | 2篇 |
1998年 | 5篇 |
1997年 | 1篇 |
1995年 | 1篇 |
1994年 | 2篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1991年 | 2篇 |
1990年 | 3篇 |
1988年 | 2篇 |
1986年 | 1篇 |
1985年 | 2篇 |
1983年 | 4篇 |
1982年 | 1篇 |
1980年 | 1篇 |
1979年 | 2篇 |
1978年 | 3篇 |
1977年 | 1篇 |
1973年 | 2篇 |
1972年 | 1篇 |
排序方式: 共有187条查询结果,搜索用时 15 毫秒
11.
Xylose and cellobiose fermentation to ethanol by the thermotolerant methylotrophic yeast Hansenula polymorpha 总被引:3,自引:0,他引:3
Wild-type strains of the thermotolerant methylotrophic yeast Hansenula polymorpha are able to ferment glucose, cellobiose and xylose to ethanol. H. polymorpha most actively fermented sugars to ethanol at 37 degrees C, whereas the well-known xylose-fermenting yeast Pichia stipitis could not effectively ferment carbon substrates at this temperature. H. polymorpha even could ferment both glucose and xylose up to 45 degrees C. This species appeared to be more ethanol tolerant than P. stipitis but more susceptible than Saccharomyces cerevisiae. A riboflavin-deficient mutant of H. polymorpha increased its ethanol productivity from glucose and xylose under suboptimal supply with riboflavin. Mutants of H. polymorpha defective in alcohol dehydrogenase activity produced lower amounts of ethanol from glucose, whereas levels of ethanol production from xylose were identical for the wild-type strain and the alcohol dehydrogenase-defective mutant. 相似文献
12.
Orthologues of Saccharomyces cerevisiae CCZ1, MON1 and YPT7 genes in the methylotrophic yeast, Pichia pastoris, have been identified. These genes encode proteins, which act as a complex, being involved in degradation of oleate-induced peroxisomes, Cvt (cytoplasm to vacuole targeting) pathway and non-specific macroautophagy in S. cerevisiae. CCZ1, MON1 and YPT7 gene orthologues are essential for multiple delivery pathways in P. pastoris. Strains with deletion of either of these genes displayed complete deficiency in pexophagy, non-specific macroautophagy and the biosynthetic Cvt pathway. The data suggest that CCZ1, MON1 and YPT7 genes are involved in degradation of both small oleate-induced and large methanol-induced peroxisomes. The data suggest conservative functions of CCZ1, MON1 and YPT7 genes among yeast species. 相似文献
13.
Samuel J Atkinson Aleksander M Gontarczyk Abdullah AA Alghamdi Tim S Ellison Robert T Johnson Wesley J Fowler Benjamin M Kirkup Bernardo C Silva Bronwen E Harry Jochen G Schneider Katherine N Weilbaecher Mette M Mogensen Mark D Bass Maddy Parsons Dylan R Edwards Stephen D Robinson 《EMBO reports》2018,19(7)
Integrin β3 is seen as a key anti‐angiogenic target for cancer treatment due to its expression on neovasculature, but the role it plays in the process is complex; whether it is pro‐ or anti‐angiogenic depends on the context in which it is expressed. To understand precisely β3's role in regulating integrin adhesion complexes in endothelial cells, we characterised, by mass spectrometry, the β3‐dependent adhesome. We show that depletion of β3‐integrin in this cell type leads to changes in microtubule behaviour that control cell migration. β3‐integrin regulates microtubule stability in endothelial cells through Rcc2/Anxa2‐driven control of active Rac1 localisation. Our findings reveal that angiogenic processes, both in vitro and in vivo, are more sensitive to microtubule targeting agents when β3‐integrin levels are reduced. 相似文献
14.
TO Sogbanmu AO Osibona OA Oguntunde AA Otitoloju 《African Journal of Aquatic Science》2018,43(3):281-292
Physiological, biochemical and histological indices in Clarias gariepinus broodstock, and teratogenic indices in embryos exposed to sublethal concentrations of naphthalene, phenanthrene and pyrene were investigated in 2014 using a static-renewal bioassay protocol. Phenanthrene (1.41 mg l?1) was the most toxic, followed by pyrene (1.53 mg l?1) and naphthalene (7.21 mg l?1), based on 96 h LC50 values. Hepatosomatic indices were significantly higher in naphthalene- and pyrene-treated males compared with solvent controls, whereas fecundity in females was significantly lower by factors of 2.4 (naphthalene), 2.8 (phenanthrene) and 2.4 (pyrene), compared with controls. Catalase levels were lower in female phenanthrene-treated fish compared with controls. Histological alterations observed in PAH-treated fish include oedema, inflammatory cells, epithelial lifting and hyperplasia in the gills, vacuolation, haemosiderin pigments and sinusoidal congestion in the liver, and degenerated zona radiata in the ovary. Teratogenic effects were not observed, as evidenced by the lack of histological alterations in embryos spawned from pre-exposed broodstock. Sex-specific responses and the utility of biomarkers at cellular and individual levels of organisation are therefore demonstrated for holistic evaluations of polycyclic aromatic hydrocarbons in ecotoxicological studies. 相似文献
15.
Stasyk OV Stasyk OG Komduur J Veenhuis M Cregg JM Sibirny AA 《The Journal of biological chemistry》2004,279(9):8116-8125
Peroxisome biogenesis and synthesis of peroxisomal enzymes in the methylotrophic yeast Hansenula polymorpha are under the strict control of glucose repression. We identified an H. polymorpha glucose catabolite repression gene (HpGCR1) that encodes a hexose transporter homologue. Deficiency in GCR1 leads to a pleiotropic phenotype that includes the constitutive presence of peroxisomes and peroxisomal enzymes in glucose-grown cells. Glucose transport and repression defects in a UV-induced gcr1-2 mutant were found to result from a missense point mutation that substitutes a serine residue (Ser(85)) with a phenylalanine in the second predicted transmembrane segment of the Gcr1 protein. In addition to glucose, mannose and trehalose fail to repress the peroxisomal enzyme, alcohol oxidase in gcr1-2 cells. A mutant deleted for the GCR1 gene was additionally deficient in fructose repression. Ethanol, sucrose, and maltose continue to repress peroxisomes and peroxisomal enzymes normally and therefore, appear to have GCR1-independent repression mechanisms in H. polymorpha. Among proteins of the hexose transporter family of baker's yeast, Saccharomyces cerevisiae, the amino acid sequence of the H. polymorpha Gcr1 protein shares the highest similarity with a core region of Snf3p, a putative high affinity glucose sensor. Certain features of the phenotype exhibited by gcr1 mutants suggest a regulatory role for Gcr1p in a repression pathway, along with involvement in hexose transport. 相似文献
16.
Ryanne JM Lemmens Annick AA Timmermans Yvonne JM Janssen-Potten Rob JEM Smeets Henk AM Seelen 《BMC neurology》2012,12(1):1-17
Background
Loss of arm-hand performance due to a hemiparesis as a result of stroke or cerebral palsy (CP), leads to large problems in daily life of these patients. Assessment of arm-hand performance is important in both clinical practice and research. To gain more insight in e.g. effectiveness of common therapies for different patient populations with similar clinical characteristics, consensus regarding the choice and use of outcome measures is paramount. To guide this choice, an overview of available instruments is necessary. The aim of this systematic review is to identify, evaluate and categorize instruments, reported to be valid and reliable, assessing arm-hand performance at the ICF activity level in patients with stroke or cerebral palsy.Methods
A systematic literature search was performed to identify articles containing instruments assessing arm-hand skilled performance in patients with stroke or cerebral palsy. Instruments were identified and divided into the categories capacity, perceived performance and actual performance. A second search was performed to obtain information on their content and psychometrics.Results
Regarding capacity, perceived performance and actual performance, 18, 9 and 3 instruments were included respectively. Only 3 of all included instruments were used and tested in both patient populations. The content of the instruments differed widely regarding the ICF levels measured, assessment of the amount of use versus the quality of use, the inclusion of unimanual and/or bimanual tasks and the inclusion of basic and/or extended tasks.Conclusions
Although many instruments assess capacity and perceived performance, a dearth exists of instruments assessing actual performance. In addition, instruments appropriate for more than one patient population are sparse. For actual performance, new instruments have to be developed, with specific focus on the usability in different patient populations and the assessment of quality of use as well as amount of use. Also, consensus about the choice and use of instruments within and across populations is needed. 相似文献17.
L-Lactate cytochrome c oxidoreductase (flavocytochrome b2, FC b2) from the thermotolerant methylotrophic yeast Hansenula polymorpha (Pichia angusta) is, unlike the enzyme form baker's yeast, a thermostable enzyme potentially important for bioanalytical technologies for highly selective assays of L-lactate in biological fluids and foods. This paper describes the construction of flavocytochrome b2 producers with overexpression of the H. polymorpha CYB2 gene, encoding FC b2. The HpCYB2 gene under the control of the strong H. polymorpha alcohol oxidase promoter in a plasmid for multicopy integration was transformed into the recipient strain H. polymorpha C-105 (gcr1 catX), impaired in glucose repression and devoid of catalase activity. A method was developed for preliminary screening of the transformants with increased FC b2 activity in permeabilized yeast cells. The optimal cultivation conditions providing for the maximal yield of the target enzyme were found. The constructed strain is a promising FC b2 producer characterized by a sixfold increased (to 3 micromol min(-1) mg(-1) protein in cell-free extract) activity of the enzyme. 相似文献
18.
Positive selection of novel peroxisome biogenesis-defective mutants of the yeast Pichia pastoris 总被引:5,自引:0,他引:5
Johnson MA Waterham HR Ksheminska GP Fayura LR Cereghino JL Stasyk OV Veenhuis M Kulachkovsky AR Sibirny AA Cregg JM 《Genetics》1999,151(4):1379-1391
We have developed two novel schemes for the direct selection of peroxisome-biogenesis-defective (pex) mutants of the methylotrophic yeast Pichia pastoris. Both schemes take advantage of our observation that methanol-induced pex mutants contain little or no alcohol oxidase (AOX) activity. AOX is a peroxisomal matrix enzyme that catalyzes the first step in the methanol-utilization pathway. One scheme utilizes allyl alcohol, a compound that is not toxic to cells but is oxidized by AOX to acrolein, a compound that is toxic. Exposure of mutagenized populations of AOX-induced cells to allyl alcohol selectively kills AOX-containing cells. However, pex mutants without AOX are able to grow. The second scheme utilizes a P. pastoris strain that is defective in formaldehyde dehydrogenase (FLD), a methanol pathway enzyme required to metabolize formaldehyde, the product of AOX. AOX-induced cells of fld1 strains are sensitive to methanol because of the accumulation of formaldehyde. However, fld1 pex mutants, with little active AOX, do not efficiently oxidize methanol to formaldehyde and therefore are not sensitive to methanol. Using these selections, new pex mutant alleles in previously identified PEX genes have been isolated along with mutants in three previously unidentified PEX groups. 相似文献
19.
20.
O. V. Dmytruk K. V. Dmytruk A. Ya. Voronovsky A. A. Sibirny 《Cytology and Genetics》2008,42(2):127-138
Plant biomass possesses huge potential as a source for the production of biofuels. Glucose and the five-carbon sugar xylose are the principal constituents of biomass. The yeast Saccharomyces cerevisiae, which is used for industrial production of ethanol from glucose is not capable of fermenting xylose. Thus, it is necessary to find in Nature or to create microorganisms capable of achieving efficient fermentation of glucose and xylose, as a means of achieving economically feasible biomass conversion into ethanol. Active fermentation of xylose may be achieved if the initial stages of metabolism are efficiently performed [1]. In this review, the enzymes of the initial stages of xylose metabolism in yeast (xylose reductase, xylitol dehydrogenase, and xylulokinase) and bacteria (xylose isomerase and xylulokinase) are characterized. The ways for constructing yeast strains capable of achieving efficient alcoholic xylose fermentation are discussed. 相似文献