首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   5篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2015年   7篇
  2014年   4篇
  2013年   7篇
  2012年   12篇
  2011年   7篇
  2010年   5篇
  2009年   7篇
  2008年   7篇
  2007年   6篇
  2006年   3篇
  2005年   2篇
  2004年   6篇
  2000年   2篇
  1999年   1篇
排序方式: 共有89条查询结果,搜索用时 15 毫秒
51.
Human lung fibroblasts utilize integrins to attach and proliferate on type I collagen. β1 integrin is the major integrin subunit for this attachment. Integrins coordinate cellular responses to cell-cell and cell-extracellular matrix interactions that regulate a variety of biological processes. Although β1 integrin-mediated signaling pathways in lung fibroblasts have been studied, a detailed molecular mechanism regulating translational control of gene expression by 4EBP-1 is not understood. 4EBP-1 inhibits cap-dependent translation by binding to the eIF4E translation initiation factor. We found that when lung fibroblasts attach to collagen via β1 integrin, high Src activity suppresses 4EBP-1 expression via PP2A, and the decrease of 4EBP-1 is due to protein degradation. The inhibition of Src activity dramatically increases PP2A and 4EBP-1 expression. Furthermore ectopic expression of PP2A, or PP2A silencing using PP2A siRNA confirmed that 4EBP-1 is regulated by PP2A. In addition, we found that 4EBP-1 inhibition by fibroblast attachment to collagen increases cap-dependent translation. Our study showed that when lung fibroblasts are attached to collagen matrix, the β1 integrin/Src/PP2A-mediated 4EBP-1 regulatory pathway is activated. We suggest that β1 integrin-mediated signaling pathway may be a crucial event in regulating fibroblast translational control machinery on collagen matrix.  相似文献   
52.
An artificial construct mimicking the intrinsic properties of the natural extracellular matrix in bones has been considered an ideal platform for bone tissue engineering, as it can present an appropriate microenvironment and regulate cell behaviours. In this report, we introduce biodegradable composite scaffolds consisting of polycaprolactone (PCL) and biphasic calcium phosphate (BCP). The scaffolds were fabricated by a salt-leaching process, and the ability of the scaffolds to facilitate osteogenic differentiation was investigated using human mesenchymal stem cells (hMSCs). The scaffolds had an inter-connected porous structure with quadrilateral pores of approximately 200 ~ 500 μm in width. The mechanical properties of the scaffolds changed as the BCP content was increased in the starting mixture. In the hMSC experiment, although we found that hMSCs adhered to the surface, as well as the inside, of the scaffolds, the incorporated BCP did not increase the proliferation of the hMSCs over 7 days in culture. Interestingly, the alkaline phosphatase (ALP) activity was 4 times higher on the PCL/BCP composite scaffold (0.12 ± 0.03 nmol/min/μg protein) thanon the PCL scaffold (0.03 ± 0.01 nmol/min/μg protein), suggesting that BCP can aid in generating a local environment that promotes bone regeneration. Therefore, a strategy combining polymers and ceramics can be considered a useful platform for bone tissue engineering.  相似文献   
53.
Idiopathic pulmonary fibrosis (IPF) is a chronic, lethal interstitial lung disease in which the aberrant PTEN/Akt axis plays a major role in conferring a survival phenotype in response to the cell death inducing properties of type I collagen matrix. The underlying mechanism by which IPF fibroblasts become desensitized to polymerized collagen, thereby eluding collagen matrix-induced cell death has not been fully elucidated. We hypothesized that the pathologically altered PTEN/Akt axis suppresses autophagy via high mTOR kinase activity, which subsequently desensitizes IPF fibroblasts to collagen matrix induced cell death. We found that the autophagosome marker LC3-2 expression is suppressed, while mTOR activity remains high when IPF fibroblasts are cultured on collagen. However, LC3-2 expression increased in response to IPF fibroblast attachment to collagen in the presence of rapamycin. In addition, PTEN over-expression or Akt inhibition suppressed mTOR activity, thereby increasing LC3-2 expression in IPF fibroblasts. Furthermore, the treatment of IPF fibroblasts over-expressing PTEN or dominant negative Akt with autophagy inhibitors increased IPF fibroblast cell death. Enhanced p-mTOR expression along with low LC3-2 expression was also found in myofibroblasts within the fibroblastic foci from IPF patients. Our data show that the aberrant PTEN/Akt/mTOR axis desensitizes IPF fibroblasts from polymerized collagen driven stress by suppressing autophagic activity, which produces a viable IPF fibroblast phenotype on collagen. This suggests that the aberrantly regulated autophagic pathway may play an important role in maintaining a pathological IPF fibroblast phenotype in response to collagen rich environment.  相似文献   
54.
55.
The etiological agents of streptococcosis were isolated from diseased olive flounder collected on the Jeju island of Korea. A total of 151 bacterial isolates were collected between 2003 and 2006. The isolates were examined using various phenotypic and proteomic analyses, including sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), immunoblotting, and glycoprotein assays. In addition, isolates were grown on blood agar to assess hemolytic activity, and biochemical assays were performed using the API20 Strep kit. Our results revealed that all isolates were nonmotile, Gram-positive cocci that displayed negative catalase and oxidase activities. Multiplex PCR assays revealed that 43% and 57% of the isolates were Streptococcus iniae and Streptococcus parauberis , respectively. These results were consistent with those of the SDS-PAGE and immunoblot analyses using whole-cell lysates of bacterial isolates. Significant differences were observed with respect to the Voges–Proskauer, pyrrodonyl arylamidase, alkaline phosphatase, and hemolytic activities of the S. iniae and S. parauberis isolates. Isolates of S. iniae displayed uniform profiles in the immunoblot and glycoprotein assays; however, immunoblot assays of S. parauberis isolates (using a chicken IgY antibody raised against a homologous isolate) revealed three distinct antigenic profiles. Our findings suggest that S. parauberis and S. iniae are endemic pathogens responsible for the development of streptococcosis in olive flounder.  相似文献   
56.
57.
In industrial process, yeast cells are exposed to ethanol stress that affects the cell growth and the productivity. Thus, investigating the intracellular state of yeast cells under high ethanol concentration is important. In this study, using DNA microarray analysis, we performed comprehensive expression profiling of two strains of Saccharomyces cerevisiae, i.e., the ethanol-adapted strain that shows active growth under the ethanol stress condition and its parental strain used as the control. By comparing the expression profiles of these two strains under the ethanol stress condition, we found that the genes related to ribosomal proteins were highly up-regulated in the ethanol-adapted strain. Further, genes related to ATP synthesis in mitochondria were suggested to be important for growth under ethanol stress. We expect that the results will provide a better understanding of ethanol tolerance of yeast. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
58.
Phytoestrogens are the natural compounds isolated from plants, which are structurally similar to animal estrogen, 17β-estradiol. Tectoridin, a major isoflavone isolated from the rhizome of Belamcanda chinensis. Tectoridin is known as a phytoestrogen, however, the molecular mechanisms underlying its estrogenic effect are remained unclear. In this study we investigated the estrogenic signaling triggered by tectoridin as compared to a famous phytoestrogen, genistein in MCF-7 human breast cancer cells. Tectoridin scarcely binds to ER α as compared to 17β-estradiol and genistein. Despite poor binding to ER α, tectoridin induced potent estrogenic effects, namely recovery of the population of cells in the S-phase after serum starvation, transactivation of the estrogen response element, and induction of MCF-7 cell proliferation. The tectoridin-induced estrogenic effect was severely abrogated by treatment with U0126, a specific MEK1/2 inhibitor. Tectoridin promoted phosphorylation of ERK1/2, but did not affect phosphorylation of ER α at Ser118. It also increased cellular accumulation of cAMP, a hallmark of GPR30-mediated estrogen signaling. These data imply that tectoridin exerts its estrogenic effect mainly via the GPR30 and ERK-mediated rapid nongenomic estrogen signaling pathway. This property of tectoridin sets it aside from genistein where it exerts the estrogenic effects via both an ER-dependent genomic pathway and a GPR30-dependent nongenomic pathway.  相似文献   
59.

Background

Microorganisms can adapt to perturbations of the surrounding environment to grow. To analyze the adaptation process of the yeast Saccharomyces cerevisiae to a high ethanol concentration, repetitive cultivation was performed with a stepwise increase in the ethanol concentration in the culture medium.

Methodology/Principal Findings

First, a laboratory strain of S. cerevisiae was cultivated in medium containing a low ethanol concentration, followed by repetitive cultivations. Then, the strain repeatedly cultivated in the low ethanol concentration was transferred to medium containing a high ethanol concentration and cultivated repeatedly in the same high-ethanol-concentration medium. When subjected to a stepwise increase in ethanol concentration with the repetitive cultivations, the yeast cells adapted to the high ethanol concentration; the specific growth rate of the adapted yeast strain did not decrease during repetitive cultivation in the medium containing the same ethanol concentration, while that of the non-adapted strain decreased during repetitive cultivation. A comparison of the fatty acid composition of the cell membrane showed that the contents in oleic acid (C18:1) in ethanol-adapted and non-adapted strains were similar, but the content of palmitic acid (C16:0) in the ethanol-adapted strains was lower than that in the non-adapted strain in media containing ethanol. Moreover, microscopic observation showed that the mother cells of the adapted yeast were significantly larger than those of the non-adapted strain.

Conclusions

Our results suggest that activity of cell growth defined by specific growth rate of the yeast cells adapted to stepwise increase in ethanol concentration did not decrease during repetitive cultivation in high-ethanol-concentration medium. Moreover, fatty acid content of cell membrane and the size of ethanol-adapted yeast cells were changed during adaptation process. Those might be the typical phenotypes of yeast cells adapted to high ethanol concentration. In addition, the difference in sizes of the mother cell between the non-adapted and ethanol strains suggests that the cell size, cell cycle and adaptation to ethanol are thought to be closely correlated.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号