首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16513篇
  免费   1246篇
  国内免费   1217篇
  18976篇
  2024年   42篇
  2023年   238篇
  2022年   573篇
  2021年   949篇
  2020年   571篇
  2019年   760篇
  2018年   758篇
  2017年   557篇
  2016年   786篇
  2015年   1038篇
  2014年   1288篇
  2013年   1414篇
  2012年   1506篇
  2011年   1364篇
  2010年   826篇
  2009年   742篇
  2008年   845篇
  2007年   702篇
  2006年   562篇
  2005年   503篇
  2004年   417篇
  2003年   362篇
  2002年   268篇
  2001年   250篇
  2000年   222篇
  1999年   231篇
  1998年   158篇
  1997年   135篇
  1996年   121篇
  1995年   110篇
  1994年   103篇
  1993年   87篇
  1992年   102篇
  1991年   100篇
  1990年   53篇
  1989年   55篇
  1988年   41篇
  1987年   32篇
  1986年   22篇
  1985年   27篇
  1984年   23篇
  1983年   15篇
  1982年   8篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Although the human antimicrobial peptide LL37 has a broad spectrum of antimicrobial activities, it easily damages host cells following heterologous expressions. This study attempted two strategies to alleviate its damage to host cells when expressed in Pichia pastoris using the AOX1 promoter. Tandem repeat multimers of LL37 were first designed, and secretion expression strains GS115-9K-(DPLL37DP)n (n?=?2, 4, 6 and 8) containing different copies of the LL37 gene were constructed. However, LL37 tandems still killed the cells after 96?hr of induction. Subsequently, peroxisome-targeted expression was performed by adding a peroxisomal targeting signal 1 (SKL) at the C-terminus of LL37. The LL37 expression strain GS115-3.5K-LL37-SKL showed no significant inhibition in the cells after induction. Antibacterial activity assays showed that the recombinant LL37 expressed in peroxisomes had good antimicrobial activities. Then, a strain GS115-3.5K-LL37-GFP-SKL producing LL37, green fluorescent protein, and SKL fusion proteins was constructed, and the fusion protein was confirmed to be targeting the peroxisomes. However, protein extraction analysis indicated that most of the fusion proteins were still located in the cell debris after cell disruption, and further studies are required to extract more proteins from the peroxisome membrane.  相似文献   
102.
Chloroplasts are photosynthetic organelles derived from endosymbiotic cyanobacteria during evolution. Dramatic changes occurred during the process of the formation and evolution of chloroplasts, including the large-scale gene transfer from chloroplast to nucleus. However, there are still many essential characters remaining. For the chloroplast division machinery, FtsZ proteins, Ftn2, SulA and part of the division site positioning system—MinD and MinE are still conserved. New or at least partially new proteins, such as FtsZ family proteins FtsZ1 and ARC3, ARC6H, ARC5, PDV1, PDV2 and MCD1, were introduced for the division of chloroplasts during evolution. Some bacterial cell division proteins, such as FtsA, MreB, Ftn6, FtsW and FtsI, probably lost their function or were gradually lost. Thus, the chloroplast division machinery is a dynamically evolving structure with both conservation and innovation.  相似文献   
103.
Gao C  Che LW  Chen J  Xu XJ  Chi ZQ 《Cell research》2003,13(1):29-34
The present study was designed to determine the changes of phosphorylation of cAMP-response element binding protein(CREB)in hippocampus induced by ohmefentanyl stereoisomers(F9202 and F9204) in conditioned place preference(CPP)paradigm.The results showed that mice receiving F9202 and F9204 displayed obvious CPP.They could all significantly stimulate CREB phosphorylation and maintained for a long time without affecting total CREB protein levels.The effect of F9204 was similar to morphine which effect was more potent and longer than F9202.We also examined the effects of ketamine,a noncompetitive N-mthyl-D-asartate receptor(NR)antagonist,on morphine-,F9202-and F9204-induced CPP and phosphorylation of CREB in hippocampus.Ketamine could suppress not only the place preference but also the phosphorylation of CREB produced by morphine,F9202 and F9204.These findings suggest that alterations in the phosphorylation of CREB be relevant to opiates signaling and the development of opiates dependence.NR antagonists may interfere with opiates dependence and may have potential therapeutic implications.  相似文献   
104.
Aging process in mammals is associated with a decline in amplitude and a long period of circadian behaviors which are regulated by a central circadian regulator in the suprachiasmatic nucleus (SCN) and local oscillators in peripheral tissues. It is unclear whether enhancing clock function can retard aging. Using fibroblasts expressing per2::lucSV and senescent cells, we revealed cycloastragenol (CAG), a natural aglycone derivative from astragaloside IV, as a clock amplitude enhancing small molecule. CAG could activate telomerase to antiaging, but no reports focused on its effects on circadian rhythm disorders in aging mice. Here we analyze the potential effects of CAG on d -galactose-induced aging mice on the circadian behavior and expression of clock genes. For this purpose, CAG (20 mg/kg orally), was administered daily to d -galactose (150 mg/kg, subcutaneous) mice model of aging for 6 weeks. An actogram analysis of free-running activity of these mice showed that CAG significantly enhances the locomotor activity. We further found that CAG increase expressions of per2 and bmal1 genes in liver and kidney of aging mouse. Furthermore, CAG enhanced clock protein BMAL1 and PER2 levels in aging mouse liver and SCN. Our results indicated that the CAG could restore the behavior of circadian rhythm in aging mice induced by d -galactose. These data of present study suggested that CAG could be used as a novel therapeutic strategy for the treatment of age-related circadian rhythm disruption.  相似文献   
105.
An experiment was conducted in a 3?×?3?+?1 factorial experiment based on a completely randomized design to evaluate the effects of different sources of copper on growth performance, nutrient digestibility and elemental balance in young female mink on a corn–fishmeal-based diet. Animals in the control group were fed a basal diet (containing 8.05 mg Cu/kg DM; control), which mainly consisted of corn, fish meal, meat bone meal, and soybean oil, with no copper supplementation. Minks in other nine treatments were fed basal diets supplemented with Cu from reagent-grade copper sulfate, tribasic copper chloride (TBCC) and copper methionate. Cu concentrations of experiment diets were 10, 25, and 40 mg/kg copper. A metabolism trial of 4 days was conducted during the last week of experimental feeding. Final body weight and average daily gain increased (linear and quadratic, P?<?0.05) as Cu increased in the diet; maximal growth was seen in the Cu25 group. Cu supplementation slightly improved the feed conversion rate (P?=?0.095). Apparent fat digestibility was increased by copper level (P?=?0.020). Retention nitrogen was increased by copper level (linear, P?=?0.003). Copper source had a significant effect on copper retention with Cu-Met and copper sulfate treatments retention more than TBCC treatments (P?<?0.05). Our results indicate that mink can efficiently utilize added dietary fat and that Cu plays an important role in the digestion of dietary fat in mink, and mink can efficiently utilize Cu-Met and CuSO4.  相似文献   
106.
Heat shock protein A12B (HSPA12B) is the newest member of a recently defined subfamily of proteins distantly related to the 70-kDa family of heat shock proteins (HSP70) family. HSP70s play a crucial role in protecting cells, tissues, organs and animals from various noxious conditions. Here we studied the dynamic expression changes and localization of HSPA12B after middle cerebral artery occlusion (MCAO) with reperfusion induced ischemic insult processes in adult rats. Apoptosis, as indicated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, was also increased in the peri-ischemic cortex compared to non-ischemic hemisphere. The expression of HSPA12B was strongly induced in the ischemic hemisphere of MCAO reperfusion rats in vivo. In vitro studies indicated that the up-regulation of HSPA12B may be involved in oxygen-glucose deprivation-induced PC12 cell death. And knockdown of HSPA12B in cultured differentiated PC12 cells by siRNA showed that HSPA12B inhibited the expression of active caspase-3. Collectively, these results suggested that HSPA12B may be required for protecting neurons from ischemic insults.  相似文献   
107.
A rapid, sensitive and specific method for the determination of cepharanthine in human plasma using high performance liquid chromatography coupled with tandem mass spectrometry (HPLC–MS/MS) was described. Cepharanthine and the internal standard (I.S.), telmisartan, were extracted from human plasma by methanol to precipitate the protein. A centrifuged upper layer was then evaporated and reconstituted with 100 μL methanol. Chromatographic separation was performed on an AGILENT XDB-C8 column (150 mm × 2.1 mm, 5.0 μm, Agilent, USA) using a gradient mobile phase with 1 mmol/L ammonium acetate in water with 0.05% formic acid and methanol. Detection and quantitation was performed by MS/MS using electrospray ionization (ESI) and multiple reaction monitoring (MRM) in the positive ion mode. The most intense [M+H]+ MRM transition of cepharanthine at m/z 607.3 → 365.3 was used for quantitation and the transition at m/z 515.5 → 276.4 was used to monitor telmisartan. The calibration curve was linear within the concentration range of 0.5–200.0 ng/mL (= 0.9994). The limit of quantification (LOQ) was 0.5 ng/mL. The extraction recovery was above 81.1%. The accuracy was higher than 92.3%. The intra- and inter-day precisions were less than 9.66%. The method was accurate, sensitive and simple and was successfully applied to a pharmacokinetic study after single intravenous administration of 50 mg cepharanthine in 12 healthy Chinese volunteers.  相似文献   
108.
A purified polysaccharide ACDP-2 was isolated from water extract of the stems of Cistanche deserticola. Chemical and spectroscopic analyses indicated that ACDP-2 is a highly branched arabinogalactan polymer that composes of linked d-galactopyranose and d-glucopyranose, which contains predominantly a branching point at the 6-carbon. The branched side-chains compose of terminal-, 1,5-, and 1,3,5-linked arabinofuranosyl residues. ACDP-2 showed an effect in stimulating the immune response, which when applied onto the cultured mouse lymphocytes induced the cell proliferation in a dose-dependent manner.  相似文献   
109.
Gao S  Yuan K  Shah A  Kim JS  Park WH  Kim SH 《Peptides》2011,32(12):2467-2473
Reactive oxygen species (ROS) are formed as a natural by-product of the normal metabolism of oxygen and have important roles in cell signaling. The aim of this study was to investigate direct effects of ROS on atrial hemodynamics and ANP secretion in isolated perfused beating rat atria with antioxidants. When atria were paced at 1.2 Hz, N-acetyl cystein (antioxidant, NAC), α-lipoic acid (antioxidant), tempol (superoxide dismutase mimic), and apocynin (NADPH oxidase inhibitor; NOX inhibitor) did not affect ANP secretion and atrial contractility. When pacing frequency was increased from 1.2 Hz to 4 Hz, the ANP secretion increased and atrial contractility decreased. H2O2 level was increased in perfusate obtained from atria stimulated by high pacing frequency. NAC, α-lipoic acid and tempol attenuated high pacing frequency-induced ANP secretion but apocynin did not. In contrast, pyrogallol (a superoxide generator) augmented high pacing frequency-induced ANP secretion. NOX-4 protein was increased by high pacing stimulation and in diabetic rat atria. In diabetic rat atria, high pacing frequency caused an increased ANP secretion and a decreased atrial contractility, that were markedly attenuated as compared to control rats. NAC and apocynin reduced high pacing frequency-induced ANP secretion in diabetic rat atria. These results suggest that intracellular ROS formation partly through an increasing NOX activity in response to high pacing frequency is associated with an increased ANP secretion in rat atria.  相似文献   
110.

Objectives

To characterize a recombinant carbonyl reductase from Saccharomyces cerevisiae (SceCPR1) and explore its use in asymmetric synthesis of (R)-pantolactone [(R)-PL].

Results

The NADPH-dependent SceCPR1 exhibited strict (R)-enantioselectivity and high activity in the asymmetric reduction of ketopantolactone (KPL) to (R)-PL. Escherichia coli, coexpressing SceCPR1 and glucose dehydrogenase from Exiguobacterium sibiricum (EsGDH), was constructed to fulfill efficient NADPH regeneration. During the whole-cell catalyzed asymmetric reduction of KPL, the spontaneous hydrolysis of KPL significantly affected the yield of (R)-PL, which was effectively alleviated by the employment of the substrate constant-feeding strategy. The established whole-cell bioreduction for 6 h afforded 458 mM (R)-PL with the enantiomeric excess value of >99.9% and the yield of 91.6%.

Conclusions

Escherichia coli coexpressing SceCPR1 and EsGDH efficiently catalyzed the asymmetric synthesis of (R)-PL through the substrate constant-feeding strategy.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号