首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   1篇
  2023年   1篇
  2021年   3篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   3篇
  2013年   3篇
  2012年   5篇
  2011年   15篇
  2010年   7篇
  2009年   5篇
  2008年   9篇
  2007年   8篇
  2006年   6篇
  2005年   6篇
  2004年   12篇
  2003年   10篇
  2002年   9篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1992年   1篇
  1991年   4篇
  1989年   4篇
  1986年   1篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有141条查询结果,搜索用时 15 毫秒
41.
In cultured Schwann cells, elevated glucose induces alterations in arachidonic acid metabolism that cause a decrease in the content of glycerophospholipid arachidonoyl-containing molecular species (ACMS). This could result from decreased de novo arachidonic acid biosynthesis, or increased arachidonic acid release from phospholipids. Incorporation of radioactive 8,11,14-eicosatrienoic acid into ACMS was lower for cells grown in 30 mm versus 5 mm glucose, consistent with a decrease in delta5 desaturase activity. However, neither basal arachidonic acid release from prelabeled cells nor stimulated generation of arachidonic acid in the presence of the reacylation inhibitor, thimerosal, the phosphotyrosine phosphatase inhibitor, bipyridyl peroxovanadium, or both together, were altered by varying the glucose concentrations, indicating that arachidonic acid turnover did not contribute to ACMS depletion. Free cytosolic NAD+ /NADH decreased, whereas NADP+ /NADPH remained unchanged for cells grown in elevated glucose, implying that decreased desaturase activity is a result of metabolic changes other than cofactor availability. Schwann cells in elevated glucose were susceptible to oxidative stress, as shown by increased malondialdehyde, depleted glutathione levels, and reduced cytosolic superoxide dismutase activity. Glutathione-altering compounds had no effect on ACMS levels, in contrast to N -acetylcysteine and alpha-lipoic acid, which partly corrected ACMS depletion in phosphatidylcholine. These findings suggest that in the Schwann cell cultures, a high glucose level elicits oxidative stress and weakens antioxidant protection mechanisms which could decrease arachidonic acid biosynthesis and that this deficit can be partly corrected by treatment with exogenous antioxidants.  相似文献   
42.
Expansion of GAA·TTC repeats within the first intron of the frataxin gene is the cause of Friedreich''s ataxia (FRDA), an autosomal recessive neurodegenerative disorder. However, no effective treatment for the disease has been developed as yet. In this study, we explored a possibility of shortening expanded GAA repeats associated with FRDA through chemotherapeutically-induced DNA base lesions and subsequent base excision repair (BER). We provide the first evidence that alkylated DNA damage induced by temozolomide, a chemotherapeutic DNA damaging agent can induce massive GAA repeat contractions/deletions, but only limited expansions in FRDA patient lymphoblasts. We showed that temozolomide-induced GAA repeat instability was mediated by BER. Further characterization of BER of an abasic site in the context of (GAA)20 repeats indicates that the lesion mainly resulted in a large deletion of 8 repeats along with small expansions. This was because temozolomide-induced single-stranded breaks initially led to DNA slippage and the formation of a small GAA repeat loop in the upstream region of the damaged strand and a small TTC loop on the template strand. This allowed limited pol β DNA synthesis and the formation of a short 5''-GAA repeat flap that was cleaved by FEN1, thereby leading to small repeat expansions. At a later stage of BER, the small template loop expanded into a large template loop that resulted in the formation of a long 5''-GAA repeat flap. Pol β then performed limited DNA synthesis to bypass the loop, and FEN1 removed the long repeat flap ultimately causing a large repeat deletion. Our study indicates that chemotherapeutically-induced alkylated DNA damage can induce large contractions/deletions of expanded GAA repeats through BER in FRDA patient cells. This further suggests the potential of developing chemotherapeutic alkylating agents to shorten expanded GAA repeats for treatment of FRDA.  相似文献   
43.
Spinal cord injury induces scar formation causes axonal damage that leads to the degeneration of axonal function. Still, there is no robust conceptual design to regenerate the damaged axon after spinal injury. Therefore, the present study demonstrates that human gingival derived neuronal stem cells (GNSCs) transplants in the injectable caffeic acid bioconjugated hydrogel (CBGH) helps to bridge the cavity and promote the engraftment and repopulation of transplants in the injured spinal tissue. Our study reports that the bioluminescence imaging in vivo imaging system (IVIS) provides a satisfactory progression in CBGH-GNSCs transplants compare to lesion control and CBGH alone. Immune regulators interleukin-6 (IL-6), tumor necrosis factor-α, neutrophil elastase are decreased, IL-10 is increased. Likewise, immunostaining (TAU/TUJ-1, SOX-2/NeuN, MAP-2/PSD93, NSE, S100b, and GFAP) shown repopulated cells. Also, TRA-1-81 expression confirms the absence of immune rejection in the CBGH-GNSCs transplants. However, locomotor recovery test, gene (IL-6, CASPASE3, p14-ARF, VEGF, LCAM, BDNF, NT3, NGN2, TrKc, FGF2, Sox-2, TUJ-1, MAP-2, Nestin, and NeuN) and protein expression (TAU, TUJ-1, SOX-2 MAP-2, PSD93, NeuN, TRA-1-81, GFAP, TAU, and MBP) shows functional improvements in the CBGH-GNSCs group. Further, GABA and glutamine level demonstrates the new synaptic vesicle formation. Hence, the CBGH scaffold enhances GNSCs transplants to restore the injured spinal tissue.  相似文献   
44.
Currently, much attention is given to the development of cellular therapies for treatment of central nervous system (CNS) injuries. Diverse cell implantation strategies, either to directly replace damaged neural tissue or to create a neuroregenerative environment, are proposed to restore impaired brain function. However, because of the complexity of the CNS, it is now becoming clear that the contribution of cell implantation into the brain will mainly act in a supportive manner. In addition, given the time dependence of neural development during embryonic and post-natal life, cellular implants, either self or non-self, will most likely have to interact for a sustained period of time with both healthy and injured neural tissue. The latter also implies potential recognition of cellular implants by the innate immune system of the brain. In this review, we will emphasize on preclinical observations in rodents, regarding the recognition and immunogenicity of autologous, allogeneic and xenogeneic cellular implants in the CNS of immune-competent hosts. Taken together, we here suggest that a profound study of the interaction between cellular grafts and the brain's innate immune system will be inevitable before clinical cell transplantation in the CNS can be performed successfully.  相似文献   
45.
46.
Mandal S  Varma K  Jain S 《Acta cytologica》2007,51(6):853-859
OBJECTIVE: To examine and subtype cutaneous lymphoma specimens for diagnosis. STUDY DESIGN: Aspiration smears from skin lesions and lymph nodes diagnosed as non-Hodgkin's lymphoma (NHL) on cytology in 6 cases over a period of 1 year were reviewed. Two were follow-up cases of nodal lymphoma and were receiving chemotherapy, during which they developed skin lesions. In 4, the patients had cutaneous lesions as a presenting manifestation. Cytologic findings were correlated with histologic and hematologic findings and immunocytochemical markers for subtyping. RESULTS: Patients ranged from 14 to 50 years, with equal sex ratio. All presented with 0.5-5 cm multiple nodular, ulcerated and fungating skin lesions at various body sites. The aspirate was satisfactory in all cases. Cytologically, all cases were diagnosed as NHL. They were then immunocytochemistry subtyped as various lymphomas. CONCLUSION: Cutaneous lymphoma should always be considered in the presence of predominantly atypical lymphoid cells in smears from nodular and fungating skin lesions, even in the absence of a definitive clinical diagnosis.  相似文献   
47.
BACKGROUND: Cystic nephroma is an uncommon pediatric renal neoplasm. It needs to be differentiated from cystic partially differentiated nephroblastoma and from other renal neoplasms showing extensive cystic change. It is scantily reported in the cytology literature. CASE: A 7-month-old female with a left-sided abdominal lump was diagnosed as having cystic Wilms' tumor on computed tomography. Fine needle aspiration cytology showed cellular smears composed of monomorphic, round to oval cells, suggestive of a small round cell tumor, possibly rhabdomyosarcoma. However, histopathologic examination showed it to be a multicystic nephroma. On review of the cytologic smears, the blastemal component was absent. CONCLUSION: This case highlights 1 extreme and unexpected cytologic appearance of cystic nephroma; it may result in misdiagnosis.  相似文献   
48.
49.
Many recent high throughput technologies have enabled large-scale discoveries of new phosphorylation sites and phosphoproteins. Although they have provided a number of insights into protein phosphorylation and the related processes, an inclusive analysis on the nature of phosphorylated sites in proteins is currently lacking. We have therefore analyzed the occurrence and occupancy of phosphorylated sites (~ 100,281) in a large set of eukaryotic proteins (~ 22,995). Phosphorylation probability was found to be much higher in both the termini of protein sequences and this is much pronounced in transmembrane proteins. A large proportion (51.3%) of occupied sites had a nearby phosphorylation within a distance of 10 amino acids; however, this proportion is very high compared to the expected one (16.9%). The distribution of phosphorylated sites in proteins showed a strong deviation from the expected maximum randomness. An analysis of phosphorylation motifs indicated that just 40 motifs and a much lower number of associated kinases might account for nearly 50% of the known phosphorylations in eukaryotic proteins. Our results provide a broad picture of the phosphorylation sites in eukaryotic proteins.  相似文献   
50.
Mulberry is an economically important tree, used for feeding the silkworm Bombyx mori L. Effect of different levels of NaCl on growth and development of mulberry has been studied using five mulberry genotypes selected on the basis of their performance under in vitro salinity. The study while endorsing the efficacy of in vitro screening of axillary buds of mulberry for salt tolerance, showed genotypic variability in its response to salinity. Salinity reduced growth and development of all genotypes. However, the putative tolerant genotypes showed better performance than the putative susceptible genotypes. Under low salinity (<0.5% NaCl) salt tolerant genotypes showed an increase in chlorophyll and protein concentrations, while in susceptible genotypes both were reduced by 3–58% at 0.5% NaCl and 50–64% at 1.00% NaCl. Leaf thickness increased by 16% at 1.00% NaCl in C776 and reduced by 1.0% in Mandalaya. The increase in chlorophyll concentration and leaf thickness under high salinity can be considered as preliminary selection parameters for salt tolerance in mulberry. The study confirmed the efficacy of in vitro method for screening of large number of genotypes for salt tolerance in mulberry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号