首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   492篇
  免费   18篇
  国内免费   1篇
  2023年   1篇
  2022年   13篇
  2021年   13篇
  2020年   12篇
  2019年   12篇
  2018年   24篇
  2017年   11篇
  2016年   13篇
  2015年   25篇
  2014年   43篇
  2013年   44篇
  2012年   51篇
  2011年   64篇
  2010年   24篇
  2009年   18篇
  2008年   28篇
  2007年   15篇
  2006年   25篇
  2005年   16篇
  2004年   9篇
  2003年   17篇
  2002年   7篇
  2001年   6篇
  2000年   3篇
  1999年   3篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   3篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
排序方式: 共有511条查询结果,搜索用时 421 毫秒
431.
Adult stem cells such as mesenchymal stem cells (MSC) are known to possess the ability to augment neovascularization processes and are thus widely popular as an autologous source of progenitor cells. However there is a huge gap in our current knowledge of mechanisms involved in differentiating MSC into endothelial cells (EC), essential for lining engineered blood vessels. To fill up this gap, we attempted to differentiate human MSC into EC, by culturing the former onto chemically fixed layers of EC or its ECM, respectively. We expected direct contact of MSC when cultured atop fixed EC or its ECM, would coax the former to differentiate into EC. Results showed that human MSC cultured atop chemically fixed EC or its ECM using EC-medium showed enhanced expression of CD31, a marker for EC, compared to other cases. Further in all human MSC cultured using EC-medium, typically characteristic cobble stone shaped morphologies were noted in comparison to cells cultured using MSC medium, implying that the differentiated cells were sensitive to soluble VEGF supplementation present in the EC-medium. Results will enhance and affect therapies utilizing autologous MSC as a cell source for generating vascular cells to be used in a variety of tissue engineering applications.  相似文献   
432.
The human proton coupled folic acid transporter PCFT is the major import route for dietary folates. Mutations in the gene encoding PCFT cause hereditary folic acid malabsorption, which manifests itself by compromised folate absorption from the intestine and also in impaired folate transport into the central nervous system. Since its recent discovery, PCFT has been the subject of numerous biochemical studies aiming at understanding its structure and mechanism. One major focus has been its oligomeric state, with some reports supporting oligomers and others a monomer. Here, we report the overexpression and purification of recombinant PCFT. Following detergent screening, n-Dodecyl β-D-maltoside (DDM) and lauryl maltose neopentyl glycol (LMNG) were chosen for further work as they exhibited the most optimal solubilization. We found that purified detergent solubilized PCFT was able to bind folic acid, thus indicating a functionally active protein. Size exclusion chromatography showed that PCFT in DDM was polydisperse; the LMNG preparation was clearly monodisperse but with shorter retention time than the major DDM peak. To assess the oligomeric state negative stain electron microscopy was performed which showed a particle with the size of a PCFT dimer.  相似文献   
433.
The brown rot fungus Rhizopus delemar F2 was shown to produce extracellular thermostable and multiple carbohydrase enzymes. The potential of Rhizopus delemar F2 in utilizing apple pomace under solid state fermentation (SSF) is the purpose of the study. Solid state fermentation (SSF) is a very effective technique opposed to submerged fermentation in various aspects. Enhanced production of multiple carbohydrases 18.20?U?g?1 of cellulose, 158.30?U?g?1 of xylanase, 61.50?U?g?1 of pectinase and amylase 21.03?U?g?1 was released by microwave pretreatment of apple pomace at 450?W for 1?min and then by incubation the culture thus obtained at 30?°C for 6 days with moisture content of 1:4.5. Apple pomace can serve as a potential source of raw material for the production of multiple carbohydrases. Besides, it can find great commercial significance in production of bioethanol and various industries like textile, fruit juice, paper and pulp industry.  相似文献   
434.
Aqueous extracts of seeds of Duranta plumieri were found to be rich in polyphenol oxidase activity. The anion-exchange chromatography of the crude extract on Streamline DEAE resolved the activity into three fractions. The major fraction (77% of the total activity) was further purified by treating it with concanavalin A-agarose in the batch mode. The enzyme preparation eluting with alpha-methylmannoside showed a single band on SDS-PAGE. The minimum molecular weight corresponded to 14,000 Da. The K(m) and V(max) of this isoenzyme were found to be 7.1 mM and 73.5 U ml(-1) min(-1) respectively. The k(cat) of this isoenzyme was calculated to be 8235 s(-1). The isoenzyme also showed the phenomenon of latency and the activity could be enhanced by 196% on heating it at 55 degrees C for 30 min.  相似文献   
435.
Tannase from Aspergillus niger van Teighem has been used for synthesis of food additive antioxidant propyl gallate by direct transesterification of tannic acid. The optimized yield of 86% was obtained by using simultaneously pH tuned enzyme, immobilized on Celite and using the right amount of water in the non aqueous media.  相似文献   
436.
Metastases are thought to arise from cancer stem cells and their tumor initiating abilities are required for the establishment of metastases. Nevertheless, in metastatic melanoma, the nature of cancer stem cells is under debate and their contribution to metastasis formation remains unknown. Using an experimental metastasis model, we discovered that high levels of the WNT receptor, FZD7, correlated with enhanced metastatic potentials of melanoma cell lines. Knocking down of FZD7 in a panel of four melanoma cell lines led to a significant reduction in lung metastases in animal models, arguing that FZD7 plays a causal role during metastasis formation. Notably, limiting dilution analyses revealed that FZD7 is essential for the tumor initiation of melanoma cells and FZD7 knockdown impeded the early expansion of metastatic melanoma cells shortly after seeding, in accordance with the view that tumor initiating ability of cancer cells is required for metastasis formation. FZD7 activated JNK in melanoma cell lines in vitro and the expression of a dominant negative JNK suppressed metastasis formation in vivo, suggesting that FZD7 may promote metastatic growth of melanoma cells via activation of JNK. Taken together, our findings uncovered a signaling pathway that regulates the tumor initiation of melanoma cells and contributes to metastasis formation in melanoma.  相似文献   
437.
438.
The objective of the present investigation was to optimize diazepam (Dzp)-loaded poly(lactic-co-glycolic acid) nanoparticles (NP) to achieve delivery in the brain through intranasal administration. Dzp nanoparticles (DNP) were formulated by nanoprecipitation and optimized using Box-Behnken design. The influence of various independent process variables (polymer, surfactant, aqueous to organic (w/o) phase ratio, and drug) on resulting properties of DNP (z-average and drug entrapment) was investigated. Developed DNP showed z-average 148–337 d.nm, polydispersity index 0.04–0.45, drug entrapment 69–92%, and zeta potential in the range of −15 to −29.24 mV. Optimized DNP were further analyzed by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), ex-vivo drug release, and in-vitro cytotoxicity. Ex-vivo drug release study via sheep nasal mucosa from DNP showed a controlled release of 64.4% for 24 h. 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay performed on Vero cell line showed less toxicity for DNP as compared to Dzp suspension (DS). Gamma scintigraphy and biodistribution study of DNP and DS was performed on Sprague-Dawley rats using technetium-99m-labeled (99mTc) Dzp formulations to investigate the nose-to-brain drug delivery pathway. Brain/blood uptake ratios, drug targeting efficiency, and direct nose-to-brain transport were found to be 1.23–1.45, 258, and 61% for 99mTc-DNP (i.n) compared to 99mTc-DS (i.n) (0.38–1.06, 125, and 1%). Scintigraphy images showed uptake of Dzp from nose-to-brain, and this observation was in agreement with the biodistribution results. These results suggest that the developed poly(D,L-lactide-co-glycolide) (PLGA) NP could serve as a potential carrier of Dzp for nose-to-brain delivery in outpatient management of status epilepticus.KEY WORDS: controlled release, nanoparticles, process optimization, scintigraphy  相似文献   
439.
Anthracnose of alfalfa, caused by the fungal pathogen Colletotrichum trifolii, is one of the most destructive diseases of alfalfa worldwide. An improved understanding of the genetic and molecular mechanisms underlying host resistance will facilitate the development of resistant alfalfa cultivars, thus providing the most efficient and environmentally sound strategy to control alfalfa diseases. Unfortunately, cultivated alfalfa has an intractable genetic system because of its tetrasomic inheritance and out-crossing nature. Nevertheless, the model legume Medicago truncatula, a close relative of alfalfa, has the potential to serve as a surrogate to map and clone the counterparts of agronomically important genes in alfalfa—particularly, disease resistance genes against economically important pathogens. Here we describe the high-resolution genetic and physical mapping of RCT1, a host resistance gene against C. trifolii race 1 in M. truncatula. We have delimited the RCT1 locus within a physical interval spanning ∼200 kb located on the top of M. truncatula linkage group 4. RCT1 is part of a complex locus containing numerous genes homologous to previously characterized TIR-NBS-LRR type resistance genes. The result presented in this paper will facilitate the positional cloning of RCT1 in Medicago.  相似文献   
440.
5-Lipoxygenase (5-LOX) is a key enzyme involved in the biosynthesis of pro-inflammatory leukotrienes, leading to asthma. Developing potent 5-LOX inhibitors especially, natural product based ones, are highly attractive. Coumaperine, a natural product found in white pepper and its derivatives were herein developed as 5-LOX inhibitors. We have synthesized twenty four derivatives, characterized and evaluated their 5-LOX inhibition potential. Coumaperine derivatives substituted with multiple hydroxy and multiple methoxy groups exhibited best 5-LOX inhibition. CP-209, a catechol type dihydroxyl derivative and CP-262-F2, a vicinal trihydroxyl derivative exhibited, 82.7% and 82.5% inhibition of 5-LOX respectively at 20?µM. Their IC50 values are 2.1?±?0.2?µM and 2.3?±?0.2?µM respectively, and are comparable to zileuton, IC50?=?1.4?±?0.2?µM. CP-155, a methylenedioxy derivative (a natural product) and CP-194, a 2,4,6-trimethoxy derivative showed 76.0% and 77.1% inhibition of 5-LOX respectively at 20?µM. Antioxidant study revealed that CP-209 and 262-F2 (at 20?µM) scavenged DPPH radical by 76.8% and 71.3% respectively. On the other hand, CP-155 and 194 showed very poor DPPH radical scavenging activity. Pseudo peroxidase assay confirmed that the mode of action of CP-209 and 262-F2 were by redox process, similar to zileuton, affecting the oxidation state of the metal ion in the enzyme. On the contrary, CP-155 and 194 probably act through some other mechanism which does not involve the disruption of the oxidation state of the metal in the enzyme. Molecular docking of CP-155 and 194 to the active site of 5-LOX and binding energy calculation suggested that they are non-competitive inhibitors. The In-Silico ADME/TOX analysis shows the active compounds (CP-155, 194, 209 and 262-F2) are with good drug likeliness and reduced toxicity compared to existing drug. These studies indicate that there is a great potential for coumaperine derivatives to be developed as anti-inflammatory drug.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号