首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   658篇
  免费   27篇
  685篇
  2023年   4篇
  2022年   14篇
  2021年   18篇
  2020年   14篇
  2019年   27篇
  2018年   32篇
  2017年   20篇
  2016年   27篇
  2015年   38篇
  2014年   52篇
  2013年   67篇
  2012年   59篇
  2011年   83篇
  2010年   33篇
  2009年   30篇
  2008年   32篇
  2007年   25篇
  2006年   33篇
  2005年   21篇
  2004年   16篇
  2003年   17篇
  2002年   8篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1994年   1篇
  1992年   2篇
  1987年   2篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
  1968年   1篇
排序方式: 共有685条查询结果,搜索用时 15 毫秒
51.
Phytochemical investigation of the n-butanol fraction of Evolvulus alsinoides (Linn.) led to the isolation of three new phenolic glycosides, evolvosides C, D and E (13) along with six known compounds (49). The structures of the compounds were elucidated on the basis of spectroscopic analysis, viz. 1D and 2D NMR experiments, chemical study, and comparison with literature data. Evolvoside C (1) was characterized as kaempferol 4′-O-β-d-glucopyranosyl-(1→2)-α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranoside, whereas evolvosides D and E (23) were found to be mono and di-O-methyl derivatives of 1. The new compounds (1–3) represent rare triglycoside derivatives of flavonol at C-4′. The isolated compounds (16) were screened for acute stress-induced biochemical changes in male Sprague–Dawley rats at a dose of 40 mg/kg body weight. Compounds 1 and 2 displayed anti-stress effects by normalizing hyperglycemia, plasma corticosterone, plasma creatine kinase, and adrenal hypertrophy. Compounds 3 and 6 were also found to be effective in normalizing most of these stress parameters, whereas compounds 4 and 5 were ineffective in normalizing most of these effects.  相似文献   
52.
A field experiment was conducted to observe the effect of TS amendments on soil enzymes and phytoremediation potential of two economically important cultivars of geranium. Different doses of TS were applied in soil to examine threshold limit of HMs where geranium cultivars can be grown successfully in contaminated sites. Treatment variation significantly affected pH, EC, OC, N, P, K and HM content in soil after 50 days of incubation. After harvest, both cultivars were examined to assess the impact of various treatments on their fresh herb, dry matter, essential oil yield and HM accumulation. C/G ratio close to 1 was observed at 50 tha?1 sludge treatment in both cultivars. Urease and β-glucosidase activities in soil were maximum at 50 tha?1 whereas dehydrogenase and phosphatase activities were maximum at 100 tha?1 in both cultivars. β-glucosidase, acid and alkaline phosphatase, urease and dehydrogenase activities were relatively high after 85 days over 45 days in both cultivars. Maximum metal uptake was found in roots of cv. Bourbon followed by leaves. Geranium was observed to be a good candidate for phytoremediation as it mitigates metal toxicity by root absorption and cv. Bourbon is better candidate for the same.  相似文献   
53.
The GC‐rich genome of Deinococcus radiodurans contains a very high density of putative guanine quadruplex (G4) DNA motifs and its RecQ (drRecQ) was earlier characterized as a 3′→5′ dsDNA helicase. We saw that N‐Methyl mesoporphyrin IX (NMM), a G4 DNA binding drug affected normal growth as well as the gamma radiation resistance of the wild‐type bacterium. Interestingly, NMM treatment and recQ deletion showed additive effect on normal growth but there was no effect of NMM on gamma radiation resistance of recQ mutant. The recombinant drRecQ showed ~400 times higher affinity to G4 DNA (Kd = 11.74 ± 1.77 nM) as compared to dsDNA (Kd = 4.88 ± 1.30 µM). drRecQ showed ATP independent helicase function on G4 DNA, which was higher than ATP‐dependent helicase activity on dsDNA. Unlike wild‐type cells that sparingly stained for G4 structure with Thioflavin T (ThT), recQ mutant showed very high‐density of ThT fluorescence foci on DNA indicating an important role of drRecQ in regulation of G4 DNA structure dynamics in vivo. These results together suggested that drRecQ is an ATP independent G4 DNA helicase that plays an important role in the regulation of G4 DNA structure dynamics and its impact on radioresistance in D. radiodurans.  相似文献   
54.
55.
A plant that is in part infected by a pathogen is more resistant throughout its whole body to subsequent infections – a phenomenon known as systemic acquired resistance (SAR). Mobile signals are synthesized at the site of infection and distributed throughout the plant through vascular tissues. Mechanism of SAR development subsequent to reaching the mobile signal in the distal tissue is largely unknown. Recently we showed that FLOWERING LOCUS D (FLD) gene of Arabidopsis thaliana is required in the distal tissue to activate SAR. FLD codes for a homologue of human-lysine-specific histone demethylase. Here we show that FLD function is required for priming (SAR induced elevated expression during challenge inoculation) of WRKY29 and WRKY6 genes. FLD also differentially influences basal and SAR-induced expression of WRKY38, WRKY65 and WRKY53 genes. In addition, we also show that FLD partly localizes in nucleus and influences histone modifications at the promoters of WRKY29 and WRKY6 genes. The results altogether indicate to the possibility of FLD’s involvement in epigenetic regulation of SAR.  相似文献   
56.
Molecular cloning and characterization of Brugia malayi hexokinase   总被引:1,自引:0,他引:1  
5' EST from filarial gene database has been subjected to 3' rapid amplification of cDNA ends (RACE), semi-nested PCR and PCR to obtain full-length cDNA of Brugia malayi. Full-length hexokinase gene was obtained from cDNA using gene specific primers. The elicited PCR product was cloned, sequenced and expressed as an active enzyme in Escherichia coli. Sequence analysis of B. malayi hexokinase (BmHk) revealed 59% identity with nematode Caenorhabditis elegans but low similarity with all other available hexokinases including human. BmHk, an apparent tetramer with subunit molecular mass of 72 kDa, was able to phosphorylate glucose, fructose, mannose, maltose and galactose. The Km values for glucose, fructose and ATP were found to be 0.035+/-0.005, 75+/-0.3 and 1.09+/-0.5 mM respectively. BmHk was strongly inhibited by ADP, glucosamine, N-acetyl glucosamine and mannoheptulose. The recombinant enzyme was found to be activated by glucose-6-phosphate. ADP exhibited noncompetitive inhibition with the substrate glucose (Ki=0.55 mM) while, mixed type of inhibition was observed with inorganic pyrophosphate (PPi) when ATP was used as substrate (Ki=9.92 microM). The enzyme activity is highly dependent on maintenance of free sulfhydryl groups. CD analysis indicated that BmHk is composed of 37% alpha-helices and 26% beta-sheets. The observed differences in kinetic properties of BmHk as compared to host enzyme may facilitate designing of specific inhibitors against BmHk.  相似文献   
57.
Sphingomyelin synthase (SMS) sits at the crossroads of sphingomyelin (SM), ceramide, diacylglycerol (DAG) metabolism. It utilizes ceramide and phosphatidylcholine as substrates to produce SM and DAG, thereby regulating lipid messengers which play a role in cell survival and apoptosis. There are two isoforms of the enzyme, SMS1 and SMS2. Both SMS1 and SMS2 contain two histidines and one aspartic acid which are evolutionary conserved within the lipid phosphate phosphatase superfamily. In this study, we systematically mutated these amino acids using site-directed mutagenesis and found that each point mutation abolished SMS activity without altering cellular distribution. We also explored the domains which are responsible for cellular distribution of both enzymes. Given their role as a potential regulator of diseases, these findings, coupled with homology modeling of SMS1 and SMS2, will be useful for drug development targeting SMS.  相似文献   
58.
59.
Dictyostelium discoideum exhibits the largest repository of polyketide synthase (PKS) proteins of all known genomes. However, the functional relevance of these proteins in the biology of this organism remains largely obscure. On the basis of computational, biochemical, and gene expression studies, we propose that the multifunctional Dictyostelium PKS (DiPKS) protein DiPKS1 could be involved in the biosynthesis of the differentiation regulating factor 4-methyl-5-pentylbenzene-1,3-diol (MPBD). Our cell-free reconstitution studies of a novel acyl carrier protein Type III PKS didomain from DiPKS1 revealed a crucial role of protein-protein interactions in determining the final biosynthetic product. Whereas the Type III PKS domain by itself primarily produces acyl pyrones, the presence of the interacting acyl carrier protein domain modulates the catalytic activity to produce the alkyl resorcinol scaffold of MPBD. Furthermore, we have characterized an O-methyltransferase (OMT12) from Dictyostelium with the capability to modify this resorcinol ring to synthesize a variant of MPBD. We propose that such a modification in vivo could in fact provide subtle variations in biological function and specificity. In addition, we have performed systematic computational analysis of 45 multidomain PKSs, which revealed several unique features in DiPKS proteins. Our studies provide a new perspective in understanding mechanisms by which metabolic diversity could be generated by combining existing functional scaffolds.  相似文献   
60.
Keratin 8/18, the predominant keratin pair of simple epithelia, is known to be aberrantly expressed in several squamous cell carcinomas (SCCs), where its expression is often correlated with increased invasion, neoplastic progression, and poor prognosis. The majority of keratin 8/18 structural and regulatory functions are governed by posttranslational modifications, particularly phosphorylation. Apart from filament reorganization, cellular processes including cell cycle, cell growth, cellular stress, and apoptosis are known to be orchestrated by K8 phosphorylation at specific residues in the head and tail domains. Even though deregulation of K8 phosphorylation at two significant sites (Serine73/Serine431) has been implicated in neoplastic progression of SCCs by various in vitro studies, including ours, it is reported to be highly context-dependent. Therefore, to delineate the precise role of Kereatin 8 phosphorylation in cancer initiation and progression, we have developed the tissue-specific transgenic mouse model expressing Keratin 8 wild type and phosphodead mutants under Keratin 14 promoter. Subjecting these mice to 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate-mediated skin carcinogenesis revealed that Keratin 8 phosphorylation may lead to an early onset of tumors compared to Keratin 8 wild-type expressing mice. Conclusively, the transgenic mouse model developed in the present study ascertained a positive impact of Keratin 8 phosphorylation on the neoplastic transformation of skin-squamous cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号