首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7391篇
  免费   559篇
  国内免费   548篇
  8498篇
  2024年   10篇
  2023年   104篇
  2022年   255篇
  2021年   446篇
  2020年   255篇
  2019年   327篇
  2018年   283篇
  2017年   246篇
  2016年   317篇
  2015年   436篇
  2014年   531篇
  2013年   547篇
  2012年   661篇
  2011年   562篇
  2010年   332篇
  2009年   351篇
  2008年   379篇
  2007年   304篇
  2006年   283篇
  2005年   208篇
  2004年   219篇
  2003年   214篇
  2002年   136篇
  2001年   136篇
  2000年   128篇
  1999年   143篇
  1998年   83篇
  1997年   70篇
  1996年   81篇
  1995年   70篇
  1994年   61篇
  1993年   31篇
  1992年   62篇
  1991年   43篇
  1990年   40篇
  1989年   22篇
  1988年   24篇
  1987年   28篇
  1986年   16篇
  1985年   33篇
  1984年   8篇
  1983年   5篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
排序方式: 共有8498条查询结果,搜索用时 11 毫秒
71.
Progesterone (P4) can participate in the development of female mammalian antral follicles through nuclear receptor (PGR). In this experiment, the differences of P4 synthesis and PGR expression in different developmental stages of sheep antral follicles (large > 5mm, medium 2-5mm, small < 2mm) were detected by enzyme-linked immunosorbent assay, immunohistochemistry, qRT-PCR and Western blotting. Secondly, sheep follicular granulosa cells were cultured in vitro. The effects of different concentrations of FSH and LH on P4 synthesis and PGR expression were studied. The results showed that acute steroid regulatory protein (StAR), cholesterol side chain lyase (P450scc) and 3β Hydroxysteroid dehydrogenase (3β-HSD) and PGR were expressed in antral follicles, and with the development of antral follicles in sheep, StAR, P450scc and the expression of 3β-HSD and PGR increased significantly. In vitro experiments showed that FSH and LH alone or together treatment could regulate P4 secretion and PGR expression in sheep follicular granulosa cells to varying degrees, hint P4 and PGR by FSH and LH, and LH was the main factor. Our results supplement the effects of FSH and LH on the regulation of P4 synthesis during follicular development, which provides new data for further study of steroid synthesis and function in follicular development.  相似文献   
72.
73.
红火蚁入侵对玉米地蜘蛛类群多样性的影响   总被引:1,自引:0,他引:1  
采用陷阱法和目测法系统研究了红火蚁入侵玉米地对蜘蛛类群多样性的影响.期间共调查到蜘蛛8科16种,其中红火蚁发生区有6科10种,药防区4科5种,对照区8科11种;蜘蛛种类以游猎型为主,隶属于猫蛛科和跳蛛科,优势种包括斜纹猫蛛、乔氏蚁蛛和蚁蛛.在红火蚁发生区,从玉米心叶后期开始红火蚁种群数量不断增加,在玉米抽穗开花期达到最大,为225头,之后缓慢降低,相应的猫蛛属蜘蛛种群数量则逐渐降低,降幅达79.2%;而蚁蛛属蜘蛛的种群数量变化不大.随着玉米植株的生长,红火蚁发生区和药防区的蜘蛛种类、多样性指数和均匀度指数逐渐降低,生态优势度指数却不断升高,而对照区相关指标则相反.表明红火蚁入侵显著改变了玉米地蜘蛛的类群结构.  相似文献   
74.
75.

Purpose

The purpose of this retrospective study was to identify the independent prognostic factors and optimize the treatment for nasopharyngeal carcinoma (NPC) patients with distant metastasis at initial diagnosis.

Methods

A total of 234 patients referred between January 2001 and December 2010 were retrospectively analyzed. Among the 234 patients, 94 patients received chemotherapy alone (CT), and 140 patients received chemoradiotherapy (CRT). Clinical features, laboratory parameters and treatment modality were examined with univariate and multivariate analyses.

Results

The median overall survival (OS) time was 22 months (range, 2-125 months), and the 1-year, 2-year, 3-year overall survival rates were 82.2%, 51.3% and 34.1%. The overall response and disease control rates of metastatic lesions after chemotherapy were 56.0% and 89.8%. The factors associated with poor response were karnofsky performance score (KPS) <80, liver metastasis, lactate dehydrogenase (LDH)>245 IU/L, and number of chemotherapy cycles <4. The 3-year OS of patients receiving CRT was higher than those receiving CT alone (48.2% vs. 12.4%, p<0.001). Subgroup analysis showed that significantly improved survival was also achieved by radiotherapy of the primary tumor in patients who achieved complete remission (CR)/partial remission (PR) or stable disease (SD) of metastatic lesions after chemotherapy. Significant independent prognostic factors of OS were KPS, liver metastasis, levels of LDH, and multiple metastases. Treatment modality, response to chemotherapy and chemotherapy cycles were also associated with OS.

Conclusion

A combination of radiotherapy and chemotherapy seems to have survival benefits for selected patients with distant metastases at initial diagnosis. Clinical and laboratory characteristics can help to guide treatment selection. Prospective randomized studies are needed to confirm the result.  相似文献   
76.
77.
Phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2alpha) on serine 51 integrates general translation repression with activation of stress-inducible genes such as ATF4, CHOP, and BiP in the unfolded protein response. We sought to identify new genes active in this phospho-eIF2alpha-dependent signaling pathway by screening a library of recombinant retroviruses for clones that inhibit the expression of a CHOP::GFP reporter. A retrovirus encoding the COOH terminus of growth arrest and DNA damage gene (GADD)34, also known as MYD116 (Fornace, A.J., D.W. Neibert, M.C. Hollander, J.D. Luethy, M. Papathanasiou, J. Fragoli, and N.J. Holbrook. 1989. Mol. Cell. Biol. 9:4196-4203; Lord K.A., B. Hoffman-Lieberman, and D.A. Lieberman. 1990. Nucleic Acid Res. 18:2823), was isolated and found to attenuate CHOP (also known as GADD153) activation by both protein malfolding in the endoplasmic reticulum, and amino acid deprivation. Despite normal activity of the cognate stress-inducible eIF2alpha kinases PERK (also known as PEK) and GCN2, phospho-eIF2alpha levels were markedly diminished in GADD34-overexpressing cells. GADD34 formed a complex with the catalytic subunit of protein phosphatase 1 (PP1c) that specifically promoted the dephosphorylation of eIF2alpha in vitro. Mutations that interfered with the interaction with PP1c prevented the dephosphorylation of eIF2alpha and blocked attenuation of CHOP by GADD34. Expression of GADD34 is stress dependent, and was absent in PERK(-)/- and GCN2(-)/- cells. These findings implicate GADD34-mediated dephosphorylation of eIF2alpha in a negative feedback loop that inhibits stress-induced gene expression, and that might promote recovery from translational inhibition in the unfolded protein response.  相似文献   
78.
79.
80.
NFBD1 functions in cell cycle checkpoint activation and DNA repair following ionizing radiation (IR). In this study, we defined the NFBD1 as a tractable molecular target to radiosensitize nasopharyngeal carcinoma (NPC) cells. Silencing NFBD1 using lentivirus-mediated shRNA-sensitized NPC cells to radiation in a dose-dependent manner, increasing apoptotic cell death, decreasing clonogenic survival and delaying DNA damage repair. Furthermore, downregulation of NFBD1 inhibited the amplification of the IR-induced DNA damage signal, and failed to accumulate and retain DNA damage-response proteins at the DNA damage sites, which leaded to defective checkpoint activation following DNA damage. We also implicated the involvement of NFBD1 in IR-induced Rad51 and DNA-dependent protein kinase catalytic subunit foci formation. Xenografts models in nude mice showed that silencing NFBD1 significantly enhanced the antitumor activity of IR, leading to tumor growth inhibition of the combination therapy. Our studies suggested that a combination of gene therapy and radiation therapy may be an effective strategy for human NPC treatment.Nasopharyngeal carcinoma (NPC) is a non-lymphomatous, squamous cell carcinoma that occurs in the epithelial lining of the nasopharynx, which is a prevalent tumor in people of southern Chinese ancestry in southern China and Southeast Asia, and the incidence is still increasing.1 Although radiotherapy is routinely used to treat patients with NPC, local recurrences and distant metastasis often occur in 30–40% of NPC patients at advanced staged.2 Thus, new therapeutic strategies are required to improve the poor prognosis of NPC.Among the various types of DNA damage, DNA double-strand breaks (DSBs) are the most serious and require elaborated networks of proteins to signal and repair the damage.3 It has recently been shown that the histone H2A variant H2AX specifically controls the recruitment of DNA repair proteins to the sites of DNA damage.4 H2AX is phosphorylated extensively on a conserved serine residue at its carboxyl terminus in chromatin regions bearing DSBs, which is mediated by members of the phos-phoinositide-3-kinase-related protein kinase (PIKK) family.5, 6 Of these PIKKs, ataxia telangiectasia mutated (ATM) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylate H2AX in response to DSBs in a partially redundant manner.7, 8 NFBD1 (Nuclear Factor with BRCT Domain Protein 1), also known as MDC1 (mediator of DNA damage checkpoint protein 1), is a recently identified nuclear protein that regulates many aspects of the DNA damage-response pathway, such as intra-S phase checkpoint, G2/M checkpoint, spindle assembly checkpoint and foci formation of NBS/MRE/Rad50 (MRN complex), 53BP1 and BRCA1.9, 10, 11, 12, 13 Human NFBD1 comprises 2089 amino acid residues and has a predicted molecular weight of ∼220 kDa. Motifs found in the protein include an FHA (Forkhead Associated) domain, two BRCT (BRCA1 carboxy terminal) domains and around 20 in terminal repeats of ∼41 amino acid residues each.14 Following DNA damage, NFBD1 serves as a bridging molecule and directly interacts with ATM and phospho-H2AX (γ-H2AX) through its FHA and BRCT domains, respectively, which leads to the expansion of γ-H2AX region surrounding DNA strand breaks and provides docking sites for many DNA damage and repair proteins including the MRN complex, 53BP1, BRCA1, RNF8, RNF4 and so on, ensuring genomics stability.11, 15, 16, 17, 18 In mammalian cells, DSBs are mainly repaired by two mechanisms, homologous recombination (HR) or non-homologous end-joining (NHEJ).19, 20, 21 For NHEJ repair, it is estimated that following exposure to ionizing radiation (IR), 80–90% of the DSBs in G1 are rejoined with fast kinetics in a manner dependent upon the NHEJ core components, Ku, DNA-PKcs, XRCC4 and DNA ligase IV. In contrast, HR predominates in late S- and G2-phase cells, when the sister chromatid is available to act as the template, representing those normally repaired with slow kinetics, require Rad51, Rad52, Rad54, XRCC2, XRCC3, the Rad51 paralogs and the breast cancer susceptibility genes BRCA1 and BRCA2.22, 23, 24, 25, 26Since NFBD1 contains protein–protein interaction domains, and participate in the DNA damage-response (DDR) pathway. However, the mechanism by which NFBD1 regulates so many aspects of the DNA damage-response pathway in NPC cells is not fully understood. In addition, the physiological function of NFBD1 in NPC cells has been not investigated. With these goals in mind, we generated NFBD1-knockdown NPC cells and studied the physiological function of NFBD1 in DDR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号