首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   22篇
  189篇
  2022年   3篇
  2021年   1篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   8篇
  2014年   11篇
  2013年   7篇
  2012年   10篇
  2011年   9篇
  2010年   13篇
  2009年   17篇
  2008年   12篇
  2007年   16篇
  2006年   9篇
  2005年   20篇
  2004年   7篇
  2003年   12篇
  2002年   9篇
  2000年   1篇
  1999年   1篇
  1998年   5篇
  1997年   4篇
  1995年   5篇
  1994年   3篇
排序方式: 共有189条查询结果,搜索用时 0 毫秒
41.
Xylem plays a role not only in the transport of water and nutrients but also in the regulation of growth and development through the transport of biologically active substances. In addition to mineral salts, xylem sap contains hormones, organic nutrients and proteins. However, the physiological functions of most of those substances remain unclear. To explore genes involved in xylem sap production, we identified Arabidopsis genes expressed in the root stele of the root hair zone from gene-trap lines by randomly inserting the β-glucuronidase gene into the genome. Among 26 000 gene-trap lines, we found that 10 lines had β-glucuronidase (GUS) staining predominantly in the root stele of the root hair zone and no GUS staining in the shoots. Of these 10 lines, 2 lines showed that gene-trap tags inserted into the promoter region of the same gene, denoted Arabidopsis thaliana subtilase 4.12( AtSBT4.12 ). Analysis of AtSBT4.12 promoter using an pAtSBT4.12 ::β-glucuronidase transgenic line showed that the AtSBT4.12 gene was expressed only in the root stele of the root hair zone. AtSBT4.12 expression in roots was increased by application of methyl jasmonate. Subtilase proteins are commonly detected in proteomic analyses of xylem sap from various plant species, including Brassica napus , a relative of Arabidopsis . These results suggest that AtSBT4.12 may be a protein localized in the apoplast of root stele including xylem vessel and involved in stress responses in Arabidopsis roots.  相似文献   
42.
One of the earliest responses of legumes to symbiotic signalling is oscillation of the calcium concentration in the nucleoplasm of root epidermal cells. Integration and decoding of the calcium‐spiking signal involve a calcium‐ and calmodulin‐dependent protein kinase (CCaMK) and its phosphorylation substrates, such as CYCLOPS. Here we describe the Lotus japonicus ccamk‐14 mutant that originated from a har1‐1 suppressor screen. The ccamk‐14 mutation causes a serine to asparagine substitution at position 337 located within the calmodulin binding site, which we determined to be an in vitro phosphorylation site in CCaMK. We show that ccamk‐14 exerts cell‐specific effects on symbiosis. The mutant is characterized by an increased frequency of epidermal infections and significantly compromised cortical infections by Mesorhizobium loti and also the arbuscular mycorrhiza fungus Rhizophagus irregularis. The S337 residue is conserved across angiosperm CCaMKs, and testing discrete substitutions at this site showed that it participates in a negative regulation of CCaMK activity, which is required for the cell‐type‐specific integration of symbiotic signalling.  相似文献   
43.
(E, E, E)-Geranylgeraniol (GGOH) is a valuable starting material for perfumes and pharmaceutical products. In the yeast Saccharomyces cerevisiae, GGOH is synthesized from the end products of the mevalonate pathway through the sequential reactions of farnesyl diphosphate synthetase (encoded by the ERG20 gene), geranylgeranyl diphosphate synthase (the BTS1 gene), and some endogenous phosphatases. We demonstrated that overexpression of the diacylglycerol diphosphate phosphatase (DPP1) gene could promote GGOH production. We also found that overexpression of a BTS1-DPP1 fusion gene was more efficient for producing GGOH than coexpression of these genes separately. Overexpression of the hydroxymethylglutaryl-coenzyme A reductase (HMG1) gene, which encodes the major rate-limiting enzyme of the mevalonate pathway, resulted in overproduction of squalene (191.9 mg liter−1) rather than GGOH (0.2 mg liter−1) in test tube cultures. Coexpression of the BTS1-DPP1 fusion gene along with the HMG1 gene partially redirected the metabolic flux from squalene to GGOH. Additional expression of a BTS1-ERG20 fusion gene resulted in an almost complete shift of the flux to GGOH production (228.8 mg liter−1 GGOH and 6.5 mg liter−1 squalene). Finally, we constructed a diploid prototrophic strain coexpressing the HMG1, BTS1-DPP1, and BTS1-ERG20 genes from multicopy integration vectors. This strain attained 3.31 g liter−1 GGOH production in a 10-liter jar fermentor with gradual feeding of a mixed glucose and ethanol solution. The use of bifunctional fusion genes such as the BTS1-DPP1 and ERG20-BTS1 genes that code sequential enzymes in the metabolic pathway was an effective method for metabolic engineering.(E,E,E)-Geranylgeraniol (GGOH) can be used as an important ingredient for perfumes and as a desirable raw material for synthesizing vitamins A and E (4, 13). It is also known to induce apoptosis in various cancer and tumor cell lines (24, 36). GGOH is the dephosphorylated derivative of (E,E,E)-geranylgeranyl diphosphate (GGPP) (Fig. (Fig.1).1). GGPP is a significant intermediate of ubiquinone and carotenoid biosyntheses, especially in carotenoid-producing microorganisms and plant cells. It is also utilized as the lipid anchor of geranylgeranylated proteins. In the yeast Saccharomyces cerevisiae, GGPP is synthesized by GGPP synthase (GGPS), encoded by the BTS1 gene, which catalyzes the condensation of farnesyl diphosphate (FPP) and isopentenyl diphosphate (IPP) rather than the successive addition of IPP molecules to dimethylallyl diphosphate, geranyl diphosphate, and FPP that is detected in mammalian tissues (14). Biologically synthesized GGOH comprises only (E,E,E)-geometric isomers, and only the (E,E,E)-isomers have significant biological activities (23). The chemically synthesized form is usually obtained as mixtures of (E)- and (Z)-isomers and thus has lower potency. Therefore, there is a greater possibility of attaining efficient production of (E,E,E)-GGOH through fermentative production.Open in a separate windowFIG. 1.Biosynthetic pathway for GGOH in S. cerevisiae. The solid arrows indicate the one-step conversions in the biosynthesis, and the dashed arrows indicate the several steps. Intermediates: HMG-CoA, 3-hydroxy-3-methylflutaryl coenzyme A; DMAPP, dimethylallyl diphosphate. Enzymes: HMG-R, HMG-coenzyme A reductase (encoded by the HMG1 gene); FPS, FPP synthase (ERG20).Some yeast strains accumulate ergosterol up to 4.6% dry mass (1). Thus, yeasts have the potential to produce large amounts of GGOH if it is possible to enhance and redirect the metabolic flux to GGOH synthesis. The enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-R), encoded by the HMG1 gene has been shown to be the major rate-limiting enzyme in the mevalonate pathway in S. cerevisiae (12). Overproduction of the catalytic domain of HMG-R in an S. cerevisiae strain resulted in squalene accumulation of up to 1% (27) and 2% (8) dry mass but did not cause any difference in the contents of isoprenoid alcohols such as farnesol (FOH) and geraniol (27). These results suggest that squalene is preferably accumulated rather than GGOH when the mevalonate pathway is enhanced by overexpression of the HMG1 gene. Squalene is synthesized through the condensation of two molecules of FPP catalyzed by squalene synthase (SQS) encoded by the ERG9 gene in S. cerevisiae (Fig. (Fig.1).1). The addition of an SQS inhibitor to cultures of S. cerevisiae strains resulted in the production of considerable amounts of FOH (∼77.5 mg liter−1) and relatively small amounts of GGOH (∼2.2 mg liter−1) (20). It has also been reported that SQS-deficient (Δerg9) S. cerevisiae strains, which are sterol auxotrophic, accumulated FPP in their cells (35) and excreted 1.3 mg liter−1 of FOH into the culture medium (5). Therefore, inactivation of SQS seems to enhance FOH rather than GGOH production. This is probably because of the low GGPS activity in S. cerevisiae. Indeed, a carotenoid-producing Rhodotorula yeast strain showed higher GGOH (24.4 mg liter−1) than FOH (4.4 mg liter−1) production on cultivation with an SQS inhibitor (20). Our group previously found that GGOH production could be enhanced by overexpression of the BTS1 gene in S. cerevisiae without SQS inhibition. In addition, coexpression of a fusion of the BTS1 and farnesyl diphosphate synthetase (ERG20) genes along with the HMG1 gene resulted in the production of a substantial amount of GGOH with only a small amount of FOH (C. Ohto, M. Muramatsu, E. Sakuradani, S. Shimizu, and S. Obata, submitted for publication).These results suggest that GGOH can be produced from GGPP through some endogenous phosphatase activities when GGPP synthesis is enhanced. We therefore hypothesized that enhancement of the phosphatase activity could increase the productivity of GGOH. However, it is not clear what kind of phosphatase enhances the GGOH production. It has been reported that the products of the diacylglycerol diphosphate phosphatase (DPP1) gene and lipid phosphate phosphatase (LPP1) gene account for most of the FPP and GGPP phosphatase activities in a particulate (membrane associated) fraction of S. cerevisiae (9). In this study, we found that GGOH production could be enhanced by overexpression of these phosphatase genes. We also demonstrated that overexpression of the BTS1-DPP1 and BTS1-ERG20 fusion genes along with the HMG1 gene further increased GGOH production. Finally, we constructed a high-level GGOH-producing yeast available for industrial processes involving multicopy integration vectors. The productivity of GGOH was evaluated in test tube cultures and 10-liter jar fermentors.  相似文献   
44.
In legumes, the number of symbiotic root nodules is controlled by long-distance communication between the shoot and the root. Mutants defective in this feedback mechanism exhibit a hypernodulating phenotype. Here, we report the identification of a novel leucine-rich repeat receptor-like kinase (LRR-RLK), KLAVIER (KLV), which mediates the systemic negative regulation of nodulation in Lotus japonicus. In leaf, KLV is predominantly expressed in the vascular tissues, as with another LRR-RLK gene, HAR1, which also regulates nodule number. A double-mutant analysis indicated that KLV and HAR1 function in the same genetic pathway that governs the negative regulation of nodulation. LjCLE-RS1 and LjCLE-RS2 represent potential root-derived mobile signals for the HAR1-mediated systemic regulation of nodulation. Overexpression of LjCLE-RS1 or LjCLE-RS2 did not suppress the hypernodulation phenotype of the klv mutant, indicating that KLV is required and acts downstream of LjCLE-RS1 and LjCLE-RS2. In addition to the role of KLV in symbiosis, complementation tests and expression analyses indicated that KLV plays multiple roles in shoot development, including maintenance of shoot apical meristem, vascular continuity, shoot growth and promotion of flowering. Biochemical analyses using transient expression in Nicotiana benthamiana revealed that KLV has the ability to interact with HAR1 and with itself. Together, these results suggest that the potential KLV-HAR1 receptor complex regulates symbiotic nodule development and that KLV is also a key component in other signal transduction pathways that mediate non-symbiotic shoot development.  相似文献   
45.
Nucleoporins are components of the nuclear pore complexes, channels that regulate the transport of macromolecules between the nucleus and cytoplasm. The nucleoporin GLE1 (GLFG lethal1) functions in the export of messenger RNAs containing poly(A) tails from the nucleus into the cytoplasm. Here we investigated a mutant of the model legume Lotus japonicus that was defective in GLE1, which we designated Ljgle1. The growth of Ljgle1 was retarded under symbiotic association with rhizobia, and the nitrogen-fixation activities of the nodules were around one-third of those in the wild-type plant. The growth of Ljgle1 was not substantialy recovered by supplemention of combined nitrogen. Nodules formed on the Ljgle1 were smaller than those on the wild-type and colored faint pink. The numbers of infected cells of nodules on the Ljgle1 were smaller than on the wild-type plant, and the former cells remained undeveloped. Rhizobia in the cells of the Ljgle1 exhibited disordered forms, and the symbiosome membrane was closely attached to the bacterial membrane. These results indicate that GLE1 plays a distinct role in the symbiotic association between legumes and rhizobia.  相似文献   
46.
Leguminous plants produce 5-deoxyflavonoids and 5-deoxyisoflavonoids that play essential roles in legume-microbe interactions. Together with chalcone polyketide reductase and cytochrome P450 2-hydroxyisoflavanone synthase, the chalcone isomerase (CHI) of leguminous plants is fundamental in the construction of these ecophysiologically active flavonoids. Although CHIs of nonleguminous plants isomerize only 6'-hydroxychalcone to 5-hydroxyflavanone (CHIs with this function are referred to as type I), leguminous CHIs convert both 6'-deoxychalcone and 6'-hydroxychalcone to 5-deoxyflavanone and 5-hydroxyflavanone, respectively (referred to as type II). In this study, we isolated multiple CHI cDNAs (cCHI1-cCHI3) from a model legume, Lotus japonicus. In contrast to previous observations, the amino acid sequence of CHI2 was highly homologous to nonleguminous CHIs, whereas CHI1 and CHI3 were the conventional leguminous type. Furthermore, genome sequence analysis revealed that four CHI genes (CHI1-3 and a putative gene, CHI4) form a tandem cluster within 15 kb. Biochemical analysis with recombinant CHIs expressed in Escherichia coli confirmed that CHI1 and CHI3 are type II CHIs and that CHI2 is a type I CHI. The occurrence of both types of CHIs is probably common in leguminous plants, and it was suggested that type II CHIs evolved from an ancestral CHI by gene duplication and began to produce 5-deoxy(iso)flavonoids along with the establishment of the Fabaceae.  相似文献   
47.
48.
Maintenance of the stem cell population located at the apical meristems is essential for repetitive organ initiation during the development of higher plants. Here, we have characterized the roles of OBERON1 (OBE1) and its paralog OBERON2 (OBE2), which encode plant homeodomain finger proteins, in the maintenance and/or establishment of the meristems in Arabidopsis. Although the obe1 and obe2 single mutants were indistinguishable from wild-type plants, the obe1 obe2 double mutant displayed premature termination of the shoot meristem, suggesting that OBE1 and OBE2 function redundantly. Further analyses revealed that OBE1 and OBE2 allow the plant cells to acquire meristematic activity via the WUSCHEL-CLAVATA pathway, which is required for the maintenance of the stem cell population, and they function parallel to the SHOOT MERISTEMLESS gene, which is required for preventing cell differentiation in the shoot meristem. In addition, obe1 obe2 mutants failed to establish the root apical meristem, lacking both the initial cells and the quiescent center. In situ hybridization revealed that expression of PLETHORA and SCARECROW, which are required for stem cell specification and maintenance in the root meristem, was lost from obe1 obe2 mutant embryos. Taken together, these data suggest that the OBE1 and OBE2 genes are functionally redundant and crucial for the maintenance and/or establishment of both the shoot and root meristems.  相似文献   
49.
In Arabidopsis thaliana, a number of circadian-associated factors have been identified. Among those, TOC1 (TIMING OF CAB EXPRESSION 1) is believed to be a component of the central oscillator. TOC1 is a member of a small family of proteins, designated as Arabidopsis PSEUDO-RESPONSE REGULATORS (APRR1/TOC1, APRR3, APRR5, APRR7, and APRR9). Nonetheless, it is not very clear whether or not the APRR family members other than APRR1/TOC1 are also implicated in the mechanisms underlying the circadian rhythm. To address this issue further, here we characterized a set of T-DNA insertion mutants, each of which is assumed to have a severe lesion in each one of the quintet genes (i.e. APRR5 and APRR7). For each of these mutants (aprr5-11 and aprr7-11) we demonstrate that a given mutation singly, if not directly, affects the circadian-associated biological events simultaneously: (i) flowering time in the long-day photoperiod conditions, (ii) red light sensitivity of seedlings during the early photomorphogenesis, and (iii) the period of free-running rhythms of certain clock-controlled genes including CCA1 and APRR1/TOC1 in constant white light. These results suggest that, although the quintet members other than APRR1/TOC1 may not be directly integrated into the framework of the central oscillator, they are crucial for a better understanding of the molecular mechanisms underlying the Arabidopsis circadian clock.  相似文献   
50.
The brush mutant of Lotus japonicus exhibits a temperature-dependent impairment in nodule, root, and shoot development. At 26°C, brush formed fewer nodules, most of which were not colonized by rhizobia bacteria. Primary root growth was retarded and the anatomy of the brush root apical meristem revealed distorted cellular organization and reduced cell expansion. Reciprocal grafting of brush with wild-type plants indicated that this genotype only affected the root and that the shoot phenotype was a secondary effect. The root and nodulation phenotype cosegregated as a single Mendelian trait and the BRUSH gene could be mapped to the short arm of chromosome 2. At 18°C, the brush root anatomy was rescued and similar to the wild type, and primary root length, number of infection threads, and nodule formation were partially rescued. Superficially, the brush root phenotype resembled the ethylene-related thick short root syndrome. However, treatment with ethylene inhibitor did not recover the observed phenotypes, although brush primary roots were slightly longer. The defects of brush in root architecture and infection thread development, together with intact nodule architecture and complete absence of symptoms from shoots, suggest that BRUSH affects cellular differentiation in a tissue-dependent way.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号