首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30424篇
  免费   2385篇
  国内免费   2106篇
  34915篇
  2024年   68篇
  2023年   443篇
  2022年   1020篇
  2021年   1707篇
  2020年   1040篇
  2019年   1343篇
  2018年   1281篇
  2017年   932篇
  2016年   1275篇
  2015年   1858篇
  2014年   2211篇
  2013年   2479篇
  2012年   2776篇
  2011年   2463篇
  2010年   1483篇
  2009年   1282篇
  2008年   1508篇
  2007年   1314篇
  2006年   1156篇
  2005年   946篇
  2004年   795篇
  2003年   666篇
  2002年   599篇
  2001年   536篇
  2000年   475篇
  1999年   484篇
  1998年   271篇
  1997年   293篇
  1996年   297篇
  1995年   285篇
  1994年   254篇
  1993年   182篇
  1992年   278篇
  1991年   185篇
  1990年   153篇
  1989年   151篇
  1988年   94篇
  1987年   86篇
  1986年   62篇
  1985年   68篇
  1984年   29篇
  1983年   32篇
  1982年   18篇
  1981年   16篇
  1980年   12篇
  1979年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
171.
We constructed a non-scar triple-deleted mutant Pseudomonas aeruginosa to improve phenazine-1-carboxylic acid (PCA) yield and then optimized the culture conditions for PCA production. Using a non-scar deletion strategy, the 5′-untranslated region of the phz1 gene cluster and two genes, phzM and phzS, were knocked out of the P. aeruginosa strain M18 genome. The potential ability for high-yield PCA production in this triple-deleted mutant M18MSU1 was successfully realized by using statistical experimental designs. A 25–1 fractional factorial design was used to show that the three culture components of soybean meal, corn steep liquor and ethanol had the most significant effect on PCA production. Using a central composite design, the concentration of the three components was optimized. The maximum PCA production was predicted to be 4,725.1 mg/L. With the optimal medium containing soybean meal 74.25 g/L, corn steep liquor 13.01 g/L and ethanol 21.84 ml/L, a PCA production of 4,771.2 mg/L was obtained in the validation experiments, which was nearly twofold of that before optimization and tenfold of that in the wild-type strain. This non-scar triple-deleted mutant M18MSU1 may be a suitable strain for industrial production of this biologically synthesized fungicide due to its high PCA production, presumed safety, thermal adaptability and cost-effectiveness.  相似文献   
172.
Fusaric acid (FA) is a nonhost-selective toxin mainly produced by Fusarium oxysporum, the causal agent of plant wilt diseases. We demonstrate that FA can induce programmed cell death (PCD) in tobacco suspension cells and the FA-induced PCD is modulated by nitric oxide (NO) signalling. Cells undergoing cell death induced by FA treatment exhibited typical characteristics of PCD including cytoplasmic shrinkage, chromatin condensation, DNA fragmentation, membrane plasmolysis, and formation of small cytoplasmic vacuoles. In addition, caspase-3-like activity was activated upon the FA treatment. The process of FA-induced PCD was accompanied by a rapid accumulation of NO in a FA dose-dependent manner. Pre-treatment of cells with NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) or NO synthase inhibitor N G-monomethyl-arginine monoacetate (L-NMMA) significantly reduced the rate of FA-induced cell death. Furthermore, the caspase-3-like activity and the expression of PAL and Hsr203J genes were alleviated by application of cPTIO or L-NMMA to FA-treated tobacco cells. This indicates that NO is an important factor involved in the FA-induced PCD. Our results also show that pre-treatment of tobacco cells with a caspase-3-specific inhibitor, Ac-DEVD-CHO, can reduce the rate of FA-induced cell death. These results demonstrate that the FA-induced cell death is a PCD and is modulated by NO signalling through caspase-3-like activation.  相似文献   
173.
Most aerobic granule cultivation has been based on the sequencing batch reactor (SBR) and then the factors that affect aerobic granulations were developed in the SBR. However, little work has been done to cultivate aerobic granules in a continuous-flow bioreactor with simple structure that is realistic for engineering. This work is the first to cultivate aerobic granules in a continuous flow airlift fluidized bed reactor (CAFB) possesses a very simple structure and without settling time and starvation time controlling. The configuration of CAFB was the simplest continuous-flow aerobic granular bioreactor reported by now. The majority of granules could be formatted in the CAFB after 12 days cultivation. The effluent COD concentration maintained at 50 ± 10 mg/L for the variable COD loading rate of 3.5 g COD/L/d and 4.8 g COD/L/d, which confirmed that the CAFB performed good anti-shock abilities. CAFB performed good nitrification ability, however, little denitrification was found under the operating conditions of this study. The shear stress acting on the solid phase were hundreds of times stronger in the CAFB than in the SBR at the same aeration strength. It seems CAFB is very efficient for granulation due to the strong shear-force exertion, which is promising for continuous-flow aerobic granular bioreactor. Protein, positive to the hydrophobicity, was predominant in extracellular polymeric substances in the granules, and favored the granules formation in the CAFB combined with the polysaccharides. However, filamentous bulking always happened in 35 days operation of the CAFB, thus further study on the stability of this bioreactor is urgently necessary.  相似文献   
174.
The microbial production of L-(+)-lactic acid is rapidly expanding to allow increased production of polylactic acid (PLA), a renewable, biodegradable plastic. The physical properties of PLA can be tailored for specific applications by controlling the ratio of L-(+) and D-(-) isomers. For most uses of PLA, the L-(+) isomer is more abundant. As an approach to reduce costs associated with biocatalysis (complex nutrients, antibiotics, aeration, product purification, and waste disposal), a recombinant derivative of Escherichia coli W3110 was developed that contains five chromosomal deletions (focA-pflB frdBC adhE ackA ldhA). This strain was constructed from a D-(-)-lactic acid-producing strain, SZ63 (focA-pflB frdBC adhE ackA), by replacing part of the chromosomal ldhA coding region with Pediococcus acidilactici ldhL encoding an L-lactate dehydrogenase. Although the initial strain (SZ79) grew and fermented poorly, a mutant (SZ85) was readily isolated by selecting for improved growth. SZ85 exhibited a 30-fold increase in L-lactate dehydrogenase activity in comparison to SZ79, functionally replacing the native D-lactate dehydrogenase activity. Sequencing revealed mutations in the upstream, coding, and terminator regions of ldhL in SZ85, which are presumed to be responsible for increased L-lactate dehydrogenase activity. SZ85 produced L-lactic acid in M9 mineral salts medium containing glucose or xylose with a yield of 93 to 95%, a purity of 98% (based on total fermentation products), and an optical purity greater than 99%. Unlike other recombinant biocatalysts for L-lactic acid, SZ85 remained prototrophic and is devoid of plasmids and antibiotic resistance genes.  相似文献   
175.
The conditioned medium from B104 neuroblastoma cells (B104CM) induces proliferation of oligodendrocyte progenitor cells (OPCs) in vitro. However, the molecular events that occur during B104CM-induced proliferation of OPCs has not been well clarified. In the present study, using OPCs immunopanned from embryonic day 14 Sprague–Dawley rat spinal cords, we explored the activation of several signaling pathways and the expression of several important immediate early genes (IEGs) and cyclins in OPCs in response to B104CM. We found that B104CM can induce OPC proliferation through the activation of the extracellular signal-regulated kinases 1 and 2 (Erk1/2), but not PI3K or p38 MAPK signaling pathways in vitro. The IEGs involved in B104CM-induced OPC proliferation include c-fos, c-jun and Id2, but not c-myc, fyn, or p21. The cyclins D1, D2 and E are also involved in B104CM-stimulated proliferation of OPCs. The activation of Erk results in subsequent expression of IEGs (such as c-fos, c-jun and Id-2) and cyclins (including cyclin D1, D2 and E), which play key roles in cell cycle initiation and OPC proliferation. Collectively, these results suggest that the phosphorylation of Erk1/2 is an important molecular event during OPC proliferation induced by B104CM.  相似文献   
176.
177.
178.
Trypanothione reductase (TR) occurs exclusively in trypanosomes and leishmania, which are the etiological agents of many diseases. TR plays a vital role in the antioxidant defenses of these parasites and inhibitors of TR have potential as antitrypanosomal agents. We describe the syntheses of several spermine and spermidine derivatives and the inhibiting effects of these compounds on T. cruzi TR. All of the inhibiting compounds displayed competitive inhibition of TR-mediated reduction of trypanothione disulfide. The three most effective compounds studied were N4,N8-bis(3-phenylpropyl)spermine (12), N4,N8-bis(2-naphthylmethyl)spermine (14), and N1,N8-bis(2-naphthylmethyl)spermidine (21), with Ki values of 3.5, 5.5 and 9.5 μM, respectively. Compounds 12, 14, and 21 were found to be potent trypanocides in vitro with IC50 values ranging from 0.19 to 0.83 μM against four T. brucei ssp. strains. However, these compounds did not prolong the lives of mice infected with trypanosomes. This work indicates that certain polyamine derivatives which target a unique pathway in Trypanosomatidae have potential as antitrypanosomal agents.  相似文献   
179.
模拟5000m中度缺氧时,大鼠右室功能显著加强,而左室功能加强不显著;左右心室肌原纤维Ca2+,Mg2+-ATP酶活性下降,肌球蛋白同功酶V2和V3百分含量增加,V1百分含量减少。8000m重度缺氧时,右室功能减弱,但无统计学意义,左室功能减弱有显著性;ATP酶活性和同功酶的变化超过5000m组。此外,右室ATP酶活性与PAP呈反比且有显著性,左室ATP酶活性与CASP虽也呈反比但无显著性;右室同功酶V3百分含量与PAP呈正比,左室同功酶V3百分含量与CASP不呈比例。上述结果表明,因短期突发严重缺氧引起的心肌供氧不足对左心室心肌的直接损伤作用大于右心室心肌。  相似文献   
180.
Yin W  Zhou XM  Cai BC 《生理学报》2003,55(4):481-486
体外低钾培养肾细胞能刺激细胞膜钠-钾ATP酶。本研究利用Madin Darby狗肾细胞能在无血清培养液中健康生存48h这一特征,研究体外低钾刺激细胞膜钠-钾ATP酶所依赖的血清中的活性因子,观察了表皮生长因子(EGF)、胰岛素样生长因子(IGF1)、前列腺素1(PGE1)和转铁蛋白(tranderrin)在这一过程中的作用。结果表明,在无血清培养液中低钾并不能刺激细胞膜钠—钾ATP酶,而添加转铁蛋白可模拟血清的作用。转铁蛋白能剂量依赖性地增加ouabain结合位点,对细胞膜钠-钾ATP酶作用呈良好的时间效应关系。在低钾无血清培养液中,细胞膜钠-钾ATP酶α1亚基启动子活性增强,α1与β1亚基蛋白质表达的增加依赖于转铁蛋白的存在。进一步研究结果表明,低钾在转铁蛋白的无血清培养液环境中能增加细胞对铁的摄取(^59Fe),该作用可被铁螯合剂(deferoxamine,DFO;35 μmol/L)所阻断。DFO也可阻断转铁蛋白依赖性低钾刺激细胞膜钠-钾ATP酶数目的增多,α1亚基启动子活性增强,α1与β1亚基蛋白质表达增加。以上结果表明,低钾对细胞膜钠-钾ATP酶活性的刺激作用依赖于转铁蛋白所调节的铁的摄取。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号