首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6639篇
  免费   668篇
  国内免费   957篇
  2024年   27篇
  2023年   117篇
  2022年   294篇
  2021年   387篇
  2020年   291篇
  2019年   330篇
  2018年   278篇
  2017年   240篇
  2016年   275篇
  2015年   412篇
  2014年   501篇
  2013年   558篇
  2012年   659篇
  2011年   554篇
  2010年   379篇
  2009年   379篇
  2008年   420篇
  2007年   371篇
  2006年   280篇
  2005年   279篇
  2004年   245篇
  2003年   225篇
  2002年   185篇
  2001年   104篇
  2000年   83篇
  1999年   77篇
  1998年   93篇
  1997年   48篇
  1996年   30篇
  1995年   25篇
  1994年   25篇
  1993年   15篇
  1992年   20篇
  1991年   14篇
  1990年   8篇
  1989年   3篇
  1988年   5篇
  1987年   2篇
  1986年   4篇
  1985年   9篇
  1984年   4篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1973年   1篇
  1967年   1篇
排序方式: 共有8264条查询结果,搜索用时 15 毫秒
51.
The heterogeneity in prognoses and chemotherapeutic responses of colon cancer patients with similar clinical features emphasized the necessity for new biomarkers that help to improve the survival prediction and tailor therapies more rationally and precisely. In the present study, we established a s troma-related l ncRNA s ignature (SLS) based on 52 lncRNAs to comprehensively predict clinical outcome. The SLS model could not only distinguish patients with different recurrence and mortality risks through univariate analysis, but also served as an independent factor for relapse-free and overall survival. Compared with the conventionally used TNM stage system, the SLS model clearly possessed higher predictive accuracy. Moreover, the SLS model also effectively screened chemotherapy-responsive patients, as only patients in the low-SLS group could benefit from adjuvant chemotherapy. The following cell infiltration and competing endogenous RNA (ceRNA) network functional analyses further confirmed the association between the SLS model and stromal activation-related biological processes. Additionally, this study also identified three phenotypically distinct colon cancer subtypes that varied in clinical outcome and chemotherapy benefits. In conclusion, our SLS model may be a significant determinant of survival and chemotherapeutic decision-making in colon cancer and may have a strong clinical transformation value.  相似文献   
52.
Primary biliary cholangitis (PBC) is an autoimmune disease characterized by chronic destruction of the bile ducts. A major unanswered question regarding the pathogenesis of PBC is the precise mechanisms of small bile duct injury. Emperipolesis is one of cell‐in‐cell structures that is a potential histological hallmark associated with chronic hepatitis B. This study aimed to clarify the pathogenesis and characteristics of emperipolesis in PBC liver injury. Sixty‐six PBC patients, diagnosed by liver biopsy combined with laboratory test, were divided into early‐stage PBC (stages I and II, n = 39) and late‐stage PBC (stages III and IV, n = 27). Emperipolesis was measured in liver sections stained with haematoxylin‐eosin. The expressions of CK19, CD3, CD4, CD8, CD20, Ki67 and apoptosis of BECs were evaluated by immunohistochemistry or immunofluorescence double labelling. Emperipolesis was observed in 62.1% of patients with PBC, and BECs were predominantly host cells. The number of infiltrating CD3+ and CD8+ T cells correlated with the advancement of emperipolesis (R2 = 0.318, P < .001; R2 = 0.060, P < .05). The cell numbers of TUNEL‐positive BECs and double staining for CK19 and Ki67 showed a significant positive correlation with emperipolesis degree (R2 = 0.236, P < .001; R2 = 0.267, P < .001). We conclude that emperipolesis mediated by CD8+ T cells appears to be relevant to apoptosis of BEC and thus may aggravate the further injury of interlobular bile ducts.  相似文献   
53.
Parkinson's disease (PD) is the second most prevalent central nervous system (CNS) degenerative disease. Oxidative stress is one of key contributors to PD. Nuclear factor erythroid‐2‐related factor 2 (Nrf2) is considered to be a master regulator of many genes involved in anti‐oxidant stress to attenuate cell death. Therefore, activation of Nrf2 signalling provides an effective avenue to treat PD. Ellagic acid (EA), a natural polyphenolic contained in fruits and nuts, possesses amounts of pharmacological activities, such as anti‐oxidant stress and anti‐inflammation. Recent studies have confirmed EA could be used as a neuroprotective agent in neurodegenerative diseases. Here, mice subcutaneous injection of rotenone (ROT)‐induced DA neuronal damage was performed to investigate EA‐mediated neuroprotection. In addition, adult Nrf2 knockout mice and different cell cultures including MN9D‐enciched, MN9D‐BV‐2 and MN9D‐C6 cell co‐cultures were applied to explore the underlying mechanisms. Results demonstrated EA conferred neuroprotection against ROT‐induced DA neurotoxicity. Activation of Nrf2 signalling was involved in EA‐mediated DA neuroprotection, as evidenced by the following observations. First, EA activated Nrf2 signalling in ROT‐induced DA neuronal damage. Second, EA generated neuroprotection with the presence of astroglia and silence of Nrf2 in astroglia abolished EA‐mediated neuroprotection. Third, EA failed to produce DA neuroprotection in Nrf2 knockout mice. In conclusion, this study identified EA protected against DA neuronal loss via an Nrf2‐dependent manner.  相似文献   
54.
Microtubule actin cross‐linking factor 1 (Macf1) is a spectraplakin family member known to regulate cytoskeletal dynamics, cell migration, neuronal growth and cell signal transduction. We previously demonstrated that knockdown of Macf1 inhibited the differentiation of MC3T3‐E1 cell line. However, whether Macf1 could regulate bone formation in vivo is unclear. To study the function and mechanism of Macf1 in bone formation and osteogenic differentiation, we established osteoblast‐specific Osterix (Osx) promoter‐driven Macf1 conditional knockout mice (Macf1f/fOsx‐Cre). The Macf1f/fOsx‐Cre mice displayed delayed ossification and decreased bone mass. Morphological and mechanical studies showed deteriorated trabecular microarchitecture and impaired biomechanical strength of femur in Macf1f/fOsx‐Cre mice. In addition, the differentiation of primary osteoblasts isolated from calvaria was inhibited in Macf1f/fOsx‐Cre mice. Deficiency of Macf1 in primary osteoblasts inhibited the expression of osteogenic marker genes (Col1, Runx2 and Alp) and the number of mineralized nodules. Furthermore, deficiency of Macf1 attenuated Bmp2/Smad/Runx2 signalling in primary osteoblasts of Macf1f/fOsx‐Cre mice. Together, these results indicated that Macf1 plays a significant role in bone formation and osteoblast differentiation by regulating Bmp2/Smad/Runx2 pathway, suggesting that Macf1 might be a therapeutic target for bone disease.  相似文献   
55.
A water‐soluble polysaccharide (APP‐AW) was isolated from Agrimonia pilosa and prepared to three sulphated derivatives (S1, S2 and S3). The results showed that pre‐treatment with APP‐AW, S1, S2 and S3 each at the concentration of 50 μg/mL for 48 hours was able to prevent cytotoxicity induced by 1 μmol/L dexamethasone (Dex) in MC3T3‐E1 cells via inhibition of apoptosis, which is in line with the findings in flow cytometry analysis. Meanwhile, the decreased ALP activity, collagen content, mineralization, BMP2, Runx2, OSX and OCN protein expression in DEX‐treated MC3T3‐E1 cells were reversed by the addition of APP‐AW, S1, S2 and S3. Moreover, APP‐AW, S1, S2 and S3 rescued DEX‐induced increase of Bax, cytochrome c and caspase‐3 and decrease of Bcl‐2, Wnt3, β‐catenin and c‐Myc protein expression in MC3T3‐E1 cells. Our findings suggest that pre‐treatment with APP‐AW, S1, S2 and S3 could significantly protect MC3T3‐E1 cells against Dex‐induced cell injury via inhibiting apoptosis and activating Wnt/β‐Catenin signalling pathway, thus application of these polysaccharides may be a promising alternative strategy for steroid‐induced avascular necrosis of the femoral head (SANFH) therapy.  相似文献   
56.
Numerous studies have demonstrated that thioredoxin-interacting protein (TXNIP) expression of peripheral blood leucocytes is increased in coronary artery disease (CAD). However, the molecular mechanism of this phenomenon remained unclear. DNA methylation plays important roles in the regulation of gene expression. Therefore, we speculated there might be a close association between the expression of TXNIP and methylation. In this study, we found that compared with controls, DNA methylation at cg19693031 was decreased in CAD, while mRNA expressions of TXNIP and inflammatory factors, NLRP3, IL-1β, IL-18, were increased. Methylation at cg19693031 was negatively associated with TXNIP expression in the cohort, THP-1 and macrophages/foam cells. Furthermore, Transwell assay and co-cultured adhesion assay were performed to investigate functions of TXNIP on the migration of THP-1 or the adhesion of THP-1 on the surface of endothelial cells, respectively. Notably, overexpressed TXNIP promoted the migration and adhesion of THP-1 cells and expressions of NLRP3, IL-18 and IL-1β. Oppositely, knock-down TXNIP inhibited the migration and adhesion of THP-1 and expressions of NLRP3, IL-18. In conclusion, increased TXNIP expression, related to cg19693031 demethylation orientates monocytes towards an inflammatory status through the NLRP3 inflammasome pathway involved in the development of CAD.  相似文献   
57.
58.
59.
This study aimed to describe the 25‐hydroxyvitamin D (25(OH)D) and parathyroid hormone (PTH) status of Southeast Chinese individuals influenced by season. The secondary aim was to determine the cutoff for sufficient 25(OH)D in a four‐season region. From January 2011 to June 2014, a total of 17 646 individuals were evaluated in our study. The serum levels of PTH were detected simultaneously in 5579 cases. A total of 25(OH)D and intact PTH were measured by the electrochemiluminescent immunoassay. The distribution of the concentration, prevalence and seasonal variability of 25(OH)D and PTH were studied. The mean 25(OH)D concentration in our study was 43.00(30.40) nmol/L. The prevalence of insufficiency (25(OH)D < 50 nmol/L) was 62.87% and that of deficiency (<30 nmol/L) was 28.54%. Mean serum 25(OH)D levels revealed a limited sinusoidal profile throughout the year and were significantly higher in Autumn. On the other hand, PTH levels showed an opposite response to seasonal effects relative to 25(OH)D. Age, BMI and daylight were not significantly correlated with 25(OH)D and serum PTH reached a plateau at higher values of serum 25(OH)D of 42.86 nmol/L. This study demonstrated that Vitamin D insufficiency is highly prevalent in Southeast China. The concentration of 25(OH)D in the male group was generally higher than that in the female group. Seasonal variation was an important aspect of 25(OH)D and PTH concentration. This study revealed that the optimal serum threshold of 25(OH)D for bone health should be between 40 and 50 nmol/L for Southeast Chinese individuals.  相似文献   
60.
Myocardial infarction (MI) remains the leading cause of morbidity and mortality worldwide, and novel therapeutic targets still need to be investigated to alleviate myocardial injury and the ensuing maladaptive cardiac remodelling. Accumulating studies have indicated that lncRNA H19 might exert a crucial regulatory effect on cardiovascular disease. In this study, we aimed to explore the biological function and molecular mechanism of H19 in MI. To investigate the biological functions of H19, miRNA‐22‐3p and KDM3A, gain‐ and loss‐of‐function experiments were performed. In addition, bioinformatics analysis, dual‐luciferase reporter assays, RNA immunoprecipitation (RIP) assays, RNA pull‐down assays, quantitative RT‐PCR and Western blot analyses as well as rescue experiments were conducted to reveal an underlying competitive endogenous RNA (ceRNA) mechanism. We found that H19 was significantly down‐regulated after MI. Functionally, enforced H19 expression dramatically reduced infarct size, improved cardiac performance and alleviated cardiac fibrosis by mitigating myocardial apoptosis and decreasing inflammation. However, H19 knockdown resulted in the opposite effects. Bioinformatics analysis and dual‐luciferase assays revealed that, mechanistically, miR‐22‐3p was a direct target of H19, which was also confirmed by RIP and RNA pull‐down assays in primary cardiomyocytes. In addition, bioinformatics analysis and dual‐luciferase reporter assays also demonstrated that miRNA‐22‐3p directly targeted the KDM3A gene. Moreover, subsequent rescue experiments further verified that H19 regulated the expression of KDM3A to ameliorate MI‐induced myocardial injury in a miR‐22‐3p‐dependent manner. The present study revealed the critical role of the lncRNAH19/miR‐22‐3p/KDM3A pathway in MI. These findings suggest that H19 may act as a potential biomarker and therapeutic target for MI.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号