首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4117篇
  免费   320篇
  国内免费   300篇
  4737篇
  2024年   23篇
  2023年   98篇
  2022年   204篇
  2021年   329篇
  2020年   235篇
  2019年   296篇
  2018年   259篇
  2017年   190篇
  2016年   252篇
  2015年   319篇
  2014年   422篇
  2013年   420篇
  2012年   418篇
  2011年   363篇
  2010年   191篇
  2009年   158篇
  2008年   173篇
  2007年   130篇
  2006年   74篇
  2005年   55篇
  2004年   45篇
  2003年   30篇
  2002年   25篇
  2001年   3篇
  2000年   4篇
  1999年   1篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1990年   1篇
  1985年   1篇
  1983年   2篇
  1959年   2篇
排序方式: 共有4737条查询结果,搜索用时 0 毫秒
71.
Chronic obstructive pulmonary disease (COPD) has seriously impacted the health of individuals and populations. In this study, proton nuclear magnetic resonance (1H NMR)-based metabonomics combined with multivariate pattern recognition analysis was applied to investigate the metabolic signatures of patients with COPD. Serum and urine samples were collected from COPD patients (n = 32) and healthy controls (n = 21), respectively. Samples were analyzed by high resolution 1H NMR (600 MHz), and the obtained spectral profiles were then subjected to multivariate data analysis. Consistent metabolic differences have been found in serum as well as in urine samples from COPD patients and healthy controls. Compared to healthy controls, COPD patients displayed decreased lipoprotein and amino acids, including branched-chain amino acids (BCAAs), and increased glycerolphosphocholine in serum. Moreover, metabolic differences in urine were more significant than in serum. Decreased urinary 1-methylnicotinamide, creatinine and lactate have been discovered in COPD patients in comparison with healthy controls. Conversely, acetate, ketone bodies, carnosine, m-hydroxyphenylacetate, phenylacetyglycine, pyruvate and α-ketoglutarate exhibited enhanced expression levels in COPD patients relative to healthy subjects. Our results illustrate the potential application of NMR-based metabonomics in early diagnosis and understanding the mechanisms of COPD.  相似文献   
72.
Replication of RNA viruses in insect cells triggers an antiviral defense that is mediated by RNA interference (RNAi) which generates viral-derived small interfering RNAs (siRNAs). However, it is not known whether an antiviral RNAi response is also induced in insects by reoviruses, whose double-stranded RNA genome replication is thought to occur within core particles. Deep sequencing of small RNAs showed that when the small brown planthopper (Laodelphax striatellus) was infected by Rice black-streaked dwarf virus (RBSDV) (Reoviridae; Fijivirus), more viral-derived siRNAs accumulated than when the vector insect was infected by Rice stripe virus (RSV), a negative single-stranded RNA virus. RBSDV siRNAs were predominantly 21 and 22 nucleotides long and there were almost equal numbers of positive and negative sense. RBSDV siRNAs were frequently generated from hotspots in the 5′- and 3′-terminal regions of viral genome segments but these hotspots were not associated with any predicted RNA secondary structures. Under laboratory condition, L. striatellus can be infected simultaneously with RBSDV and RSV. Double infection enhanced the accumulation of particular genome segments but not viral coat protein of RBSDV and correlated with an increase in the abundance of siRNAs derived from RBSDV. The results of this study suggest that reovirus replication in its insect vector potentially induces an RNAi-mediated antiviral response.  相似文献   
73.

Background

IgA nephropathy (IgAN) is a complex syndrome characterized by deposition of IgA and IgA containing immune complexes (ICs) composed of IgG and complement C3 proteins in the mesangial area of glomeruli. The low-affinity receptors for the Fc region of IgG (FcγRs) are involved in autoantibody/immune complex-induced organ injury as well as ICs clearance. The aim of the study was to associate multiple polymorphisms within FCGR gene locus with IgAN in a large Chinese cohort.

Patients and Methods

60 single nucleotide polymorphisms (SNPs) spanning a 400 kb range within FCGR gene locus were analyzed in 2100 DNA samples from patients with biopsy proven IgAN and healthy age- and sex-matched controls from the same population in Chinese.

Results

Among the 60 SNPs investigated, 15 gene polymorphisms within FCGR gene locus (25%) were associated with susceptibility to IgAN. The most significantly associated SNPs within individual genes were FCGR2B rs12118043 (p = 8.74*10−3, OR 0.76, 95% CI 0.62–0.93), and FCRLB rs4657093 (p = 2.28*10−3, OR 0.77, 95% CI 0.65–0.91). Both conditional analysis and linkage disequilibrium analysis suggested they were independent signals associated with IgAN. Associations between FCGR2B rs12118043 and proteinuria (p = 3.65×10−2) as well as gross hematuria (p = 4.53×10−2), between FCRLB rs4657093 and levels of serum creatinine (p = 2.67×10−2) as well as eGFR (p = 5.41*10−3) were also observed. Electronic cis-expression quantative trait loci analysis supported their possible functional significance, with protective genotypes correlating lower gene expressions.

Conclusion

Our data from genetic associations and expression associations revealed potentially pathogenic roles of Fc receptor gene polymorphisms in IgAN.  相似文献   
74.
Li  Shasha  Liu  Keke  Yu  Saisai  Jia  Shanshan  Chen  Shuo  Fu  Yuheng  Sun  Feng  Luo  Qiangwei  Wang  Yuejin 《Plant Cell, Tissue and Organ Culture》2020,140(2):389-401
Plant Cell, Tissue and Organ Culture (PCTOC) - The fruit of ‘Dangshansuli’ pear is yellowish green in colour, while that of its mutant ‘Xiusu’ is russet in colour. A...  相似文献   
75.
Decreased bridging integrator 1 (BIN1) expression has great significance in promoting the progression of malignant tumors. Reduced messenger RNA expression is partly due to aberrant alternative splicing (AS). However, the AS status of BIN1 and its correlation with BIN1 inactivation in non–small cell lung cancer (NSCLC) remains poorly defined. Here we reported that BIN1 inactivation was not related to DNA methylation in NSCLC. Importantly, BIN1 with exon 12A inclusion (BIN1+12A isoform), the most frequent aberrant splicing variant in tumors was also observed in NSCLC, and might be accounted for BIN1 inactivation. Furthermore, we showed that the aberrant splicing of BIN1 was under the control of serine and arginine-rich factor 1 (SRSF1) in NSCLC. In addition, colony formation assay showed that BIN1+12A isoform could abolish the tumor-inhibiting ability of BIN1 in NSCLC cells. Meanwhile, transwell, wound healing and apoptosis experiments demonstrated that the occurrence of BIN1+12A could abrogate the invasion suppressing activity and proapoptotic property of BIN1 in NSCLC. Significantly, we also found that BIN1+12A isoform neutralized the tumor-suppressing functions of BIN1 via affecting its subcellular localization. Altogether, these data revealed an aberrant splicing phenomenon which abated the expression and tumor-inhibiting activity of BIN1 in NSCLC, and the related mechanisms were associated with SRSF1.  相似文献   
76.
Lv  Guoying  Li  Chuangang  Wang  Weiwei  Li  Ning  Wang  Kai 《Neurochemical research》2020,45(9):2082-2090
Neurochemical Research - Postoperative cognitive dysfunction (POCD) is a common complication induced by anesthesia or surgery, which affects the concentration, cognition and memory of patients....  相似文献   
77.
Li  Yanteng  Lv  Wenying  Cheng  Gang  Wang  Shuwei  Liu  Bangxin  Zhao  Hulin  Wang  Hongwei  Zhang  Leiming  Dong  Chao  Zhang  Jianning 《Neurochemical research》2020,45(11):2723-2731
Neurochemical Research - Blast-induced traumatic brain injury (bTBI) is a leading cause of disability and mortality in soldiers during the conflicts in Iraq and Afghanistan. Although substantial...  相似文献   
78.
79.
The increasing incidence of hospital acquired infections caused by antibiotic resistant pathogens has led to an increase in morbidity and mortality, finding alternative antibiotics unaffected by resistance mechanisms is fundamentally important for treating this problem. Naturally occurring proteins usually carry short peptide fragments that exhibit noticeable biological activity against a wide variety of microorganisms such as bacteria, fungi and protozoa. Traditional discovery of such antimicrobially active fragments (i.e. antimicrobial peptides, AMPs) from protein repertoire is either random or led by chance. Here, we report the use of a rational protocol that combines in silico prediction and in vitro assay to identify potential AMPs with high activity and low toxicity from the entire human genome. In the procedure, a three-step inference strategy is first proposed to perform genome-wide analysis to infer AMPs in a high-throughput manner. By employing this strategy we are able to screen more than one million peptide candidates generated from various human proteins, from which we identify four highly promising samples, and subsequently their antibacterial activity on five strains as well as cytotoxicity on human myoblasts are tested experimentally. As a consequence, two high-activity, low-toxicity peptides are discovered, which could be used as the structural basis to further develop new antibiotics. In addition, from 1491 known AMPs we also derive a quantitative measure called antibacterial propensity index (API) for 20 naturally occurring amino acids, which shows a significant allometric correlation with the theoretical minimal inhibitory concentration of putative peptides against Gram-positive and Gram-negative bacteria. This study may provide a proof-of-concept paradigm for the genome-wide discovery of novel antimicrobial peptides by using a combination of in silico and in vitro analyses.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号