首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1161篇
  免费   51篇
  2023年   2篇
  2022年   10篇
  2021年   23篇
  2020年   9篇
  2019年   16篇
  2018年   40篇
  2017年   36篇
  2016年   28篇
  2015年   49篇
  2014年   44篇
  2013年   64篇
  2012年   84篇
  2011年   94篇
  2010年   53篇
  2009年   38篇
  2008年   68篇
  2007年   82篇
  2006年   68篇
  2005年   58篇
  2004年   62篇
  2003年   42篇
  2002年   58篇
  2001年   14篇
  2000年   13篇
  1999年   13篇
  1998年   10篇
  1997年   15篇
  1996年   9篇
  1995年   10篇
  1994年   5篇
  1993年   12篇
  1992年   4篇
  1991年   6篇
  1989年   3篇
  1987年   4篇
  1986年   2篇
  1985年   6篇
  1984年   6篇
  1983年   6篇
  1982年   7篇
  1981年   4篇
  1980年   4篇
  1979年   5篇
  1978年   2篇
  1977年   4篇
  1976年   5篇
  1975年   4篇
  1973年   4篇
  1972年   3篇
  1971年   1篇
排序方式: 共有1212条查询结果,搜索用时 140 毫秒
41.
Podoplanin (PDPN) is known as a lymphatic endothelial cell marker. Monoclonal antibodies (mAbs) against human, mouse, rat, rabbit, dog, cat, bovine, pig, and horse PDPN have been established in our previous studies. However, mAbs against alpaca PDPN (aPDPN), required for immunohistochemical analysis, remain to be developed. In the present study, we employed the Cell-Based Immunization and Screening (CBIS) method for producing anti-aPDPN mAbs. We immunized mice with aPDPN-overexpressing Chinese hamster ovary (CHO)-K1 cells (CHO/aPDPN), and hybridomas producing mAbs against aPDPN were screened using flow cytometry. One of the mAbs, PMab-225 (IgG2b, kappa), specifically detected CHO/aPDPN cells via flow cytometry and recognized the aPDPN protein on Western blotting. Further, PMab-225 strongly stained lung type I alveolar cells, colon lymphatic endothelial cells, and kidney podocytes via immunohistochemistry. These findings demonstrate that PMab-225 antibody is useful to investigate the function of aPDPN via different techniques.  相似文献   
42.
Monoclonal antibodies (mAbs) against not only human, mouse, and rat but also rabbit, dog, cat, bovine, pig, and horse podoplanins (PDPNs) have been established in our previous studies. PDPN is used as a lymphatic endothelial cell marker in pathological diagnoses. However, mAbs against Tasmanian devil PDPN (tasPDPN), which are useful for immunohistochemical analysis, remain to be developed. Herein, mice were immunized with tasPDPN-overexpressing Chinese hamster ovary (CHO)-K1 (CHO/tasPDPN) cells, and hybridomas producing mAbs against tasPDPN were screened using flow cytometry. One of the mAbs, PMab-233 (IgG1, kappa), specifically detected CHO/tasPDPN cells by flow cytometry and recognized tasPDPN protein by western blotting. Furthermore, PMab-233 strongly detected CHO/tasPDPN cells by immunohistochemistry. These findings suggest that PMab-233 may be useful as a lymphatic endothelial cell marker of the Tasmanian devil.  相似文献   
43.
Cryopreservation of embryonic stem (ES) cells is essential to establish them as a resource for regenerative therapy. We evaluated survival adhesion rate, cell structure, gene expression, and multipotency of frozen and thawed embryoid bodies (EBs) derived from mouse ES cells. EBs were cryopreserved using the BICELL and the Program Freezer. After one week the EBs were thawed and cultured. EBs prepared in the Program Freezer had the highest survival adhesion (Program Freezer; 55-69%, BICELL; 30-38%). Though many cells in the thawed EBs were damaged, some were not, especially those prepared in the Program Freezer. RT-PCR analysis showed that genes characteristic of the three embryonic germ layers were expressed in thawed EBs cultured for one week. EBs transplanted into mice formed teratomas consisting of cells derived from the three germ layers. In conclusion, EBs frozen in the Program Freezer had higher survival adhesion rates compared to the BICELL and formed differentiated cells characteristic of the three embryonic germ layers.  相似文献   
44.
Therian mammals (marsupials and eutherians) rely on a placenta for embryo survival. All mammals have a yolk sac, but while both chorio-allantoic and chorio-vitelline (yolk sac) placentation can occur, most marsupials only develop a yolk sac placenta. Insulin (INS) is unusual in that it is the only gene that is imprinted exclusively in the yolk sac placenta. Marsupials, therefore, provide a unique opportunity to examine the conservation of INS imprinting in mammalian yolk sac placentation. Marsupial INS was cloned and its imprint status in the yolk sac placenta of the tammar wallaby, Macropus eugenii, examined. In two informative individuals of the eight that showed imprinting, INS was paternally expressed. INS protein was restricted to the yolk sac endoderm, while insulin receptor, IR, protein was additionally expressed in the trophoblast. INS protein increased during late gestation up to 2 days before birth, but was low the day before and on the day of birth. The conservation of imprinted expression of insulin in the yolk sac placenta of divergent mammalian species suggests that it is of critical importance in the yolk sac placenta. The restriction of imprinting to the yolk sac suggests that imprinting of INS evolved in the chorio-vitelline placenta independently of other tissues in the therian ancestor of marsupials and eutherians.  相似文献   
45.
In self-incompatibility, a number of S haplotypes are maintained by frequency-dependent selection, which results in trans-specific S haplotypes. The region of several kilobases (approximately 40-60 kb) from SP6 to SP2, including self-incompatibility-related genes and some adjacent genes in Brassica rapa, has high nucleotide diversity due to the hitchhiking effect, and therefore we call this region the "S-locus complex." Recombination in the S-locus complex is considered to be suppressed. We sequenced regions of >50 kb of the S-locus complex of three S haplotypes in B. rapa and found higher nucleotide diversity in intergenic regions than in coding regions. Two highly similar regions of >10 kb were found between BrS-8 and BrS-46. Phylogenetic analysis using trans-specific S haplotypes (called interspecific pairs) of B. rapa and B. oleracea suggested that recombination reduced the nucleotide diversity in these two regions and that the genes not involved in self-incompatibility in the S-locus complex and the kinase domain, but not the S domain, of SRK have also experienced recombination. Recombination may reduce hitchhiking diversity in the S-locus complex, whereas the region from the S domain to SP11 would disfavor recombination.  相似文献   
46.
47.
Among mammals, only eutherians and marsupials are viviparous and have genomic imprinting that leads to parent-of-origin-specific differential gene expression. We used comparative analysis to investigate the origin of genomic imprinting in mammals. PEG10 (paternally expressed 10) is a retrotransposon-derived imprinted gene that has an essential role for the formation of the placenta of the mouse. Here, we show that an orthologue of PEG10 exists in another therian mammal, the marsupial tammar wallaby (Macropus eugenii), but not in a prototherian mammal, the egg-laying platypus (Ornithorhynchus anatinus), suggesting its close relationship to the origin of placentation in therian mammals. We have discovered a hitherto missing link of the imprinting mechanism between eutherians and marsupials because tammar PEG10 is the first example of a differentially methylated region (DMR) associated with genomic imprinting in marsupials. Surprisingly, the marsupial DMR was strictly limited to the 5′ region of PEG10, unlike the eutherian DMR, which covers the promoter regions of both PEG10 and the adjacent imprinted gene SGCE. These results not only demonstrate a common origin of the DMR-associated imprinting mechanism in therian mammals but provide the first demonstration that DMR-associated genomic imprinting in eutherians can originate from the repression of exogenous DNA sequences and/or retrotransposons by DNA methylation.  相似文献   
48.
Ichthyological Research - Two types of ophichthid larvae collected from Japanese coastal waters around Kyushu and Shikoku were identified by DNA barcoding as Ophichthus celebicus (Bleeker 1856) and...  相似文献   
49.
Adipose-derived stem cells (ADSCs) can differentiate into neurons under particular conditions. It remains largely unknown whether this differentiation potential is affected by physical conditions such as obesity, which modulates the functions of adipose tissue. In this study, we determined the impact of either a 9-week high-fat diet (60% fat; HFD) or 9-week exercise training on the differentiation potential of ADSCs into neuron-like cells in male Wistar rats. Rats were randomly assigned to a normal diet-fed (ND-SED) group, HFD-fed (HFD-SED) group, or exercise-trained HFD-fed group (HFD-EX). After a 9-week intervention, ADSCs from all groups differentiated into neuron-like cells. Expression of neuronal marker proteins (nestin, βIII-tubulin, and microtubule-associated protein 2 [MAP2]) and the average length of cell neurites were lower in cells from HFD-SED rats than in other groups. Instead, protein expression of COX IV and Cyt-c, the Bax/Bcl-2 and LC3-II/I ratio, and the malondialdehyde level in culture medium were higher in cells from HFD-SED rats. No significant difference between ND-SED and HFD-EX rats was observed, except for the average length of cell neurites in MAP2. Thus, HFD impaired the differentiation potential of ADSCs into neuron-like cells, which was accompanied by increases in apoptotic activity and oxidative stress. Importantly, exercise training ameliorated the HFD-induced impairment of neurogenesis in ADSCs. The adipose tissue microenvironment could influence the differentiation potential of ADSCs, a source of autologous stem cell therapy.  相似文献   
50.
In mammals, sexual fate is determined by the chromosomes of the male and female gametes during fertilization. Males (XY) or females (XX) are produced when a sperm containing a Y or X-chromosome respectively fertilizes an X-chromosome-containing unfertilized egg. However, sexing of preimplantation stage embryos cannot be conducted visually. To address this, transgenic male mouse models with the ubiquitously expressed green fluorescent protein (GFP) transgene on X- (X-GFP) or Y-chromosomes (Y-GFP) have been established. However, when crossed with wild-type females, sexing of the preimplantation stage embryos by observing the GFP signal is problematic in some cases due to X-inactivation, loss of Y-chromosome (LOY), or loss of transgene fluorescence. In this study, a mouse model with the ubiquitously expressed red fluorescent protein (RFP) transgene on the Y-chromosome was generated since RFP is easily distinguishable from GFP signals. Unfortunately, the ubiquitously expressed tdTomato RFP transgene on the Y-chromosome (Y-RFP) mouse showed the lethal phenotype after birth. No lethal phenotypes were observed when the mitochondrial locating signal N-terminal of tdTomato (mtRFP) was included in the transgene construct. Almost half of the collected fertilized eggs from Y-mtRFP male mice crossed with wild-type females had an RFP signal at the preimplantation stage (E1.5). Therefore, XY eggs were recognized as RFP-positive embryos at the preimplantation stage. Furthermore, 100% sexing was observed at the preimplantation stage using the X-linked GFP/Y-linked RFP male mouse. The established Y-mtRFP mouse models may be used to study sex chromosome related research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号