首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1516篇
  免费   108篇
  2022年   14篇
  2021年   25篇
  2020年   17篇
  2019年   18篇
  2018年   49篇
  2017年   41篇
  2016年   36篇
  2015年   60篇
  2014年   50篇
  2013年   88篇
  2012年   107篇
  2011年   114篇
  2010年   56篇
  2009年   45篇
  2008年   93篇
  2007年   96篇
  2006年   79篇
  2005年   69篇
  2004年   70篇
  2003年   55篇
  2002年   74篇
  2001年   24篇
  2000年   35篇
  1999年   21篇
  1998年   13篇
  1997年   18篇
  1996年   5篇
  1995年   11篇
  1994年   12篇
  1993年   19篇
  1992年   23篇
  1991年   19篇
  1990年   12篇
  1989年   13篇
  1988年   10篇
  1987年   13篇
  1986年   12篇
  1985年   9篇
  1984年   12篇
  1983年   9篇
  1982年   14篇
  1979年   12篇
  1977年   6篇
  1976年   4篇
  1975年   5篇
  1974年   6篇
  1973年   6篇
  1972年   5篇
  1971年   3篇
  1970年   4篇
排序方式: 共有1624条查询结果,搜索用时 296 毫秒
181.
We have previously reported that the CD8+ T cell response elicited by recombinant adenovirus vaccination displayed a delayed contraction in the spleen. In our current study, we demonstrate that this unusual kinetic is a general phenomenon observed in multiple tissues. Phenotypic analysis of transgene-specific CD8+ T cells present 30 days postimmunization with recombinant adenovirus revealed a population with evidence of partial exhaustion, suggesting that the cells had been chronically exposed to Ag. Although Ag expression could no longer be detected 3 wk after immunization, examination of Ag presentation within the draining lymph nodes demonstrated that APCs were loaded with Ag peptide for at least 40 days postimmunization, suggesting that Ag remains available to the system for a prolonged period, although the exact source of this Ag remains to be determined. At 60 days postimmunization, the CD8+ T cell population continued to exhibit a phenotype consistent with partially exhausted effector memory cells. Nonetheless, these CD8+ T cells conferred sterilizing immunity against virus challenge 7-12 wk postimmunization, suggesting that robust protective immunity can be provided by CD8+ T cells with an exhausted phenotype. These data demonstrate that prolonged exposure to Ag may not necessarily impair protective immunity and prompt a re-evaluation of the impact of persistent exposure to Ag on T cell function.  相似文献   
182.
HDL and its major component, apolipoprotein A-I (apoA-I), play a central role in reverse cholesterol transport. We recently reported the involvement of a glycosylphosphatidylinositol anchor (GPI anchor) in the binding of HDL and apoA-I on human macrophages, and purified an 80 kDa HDL/apoA-I binding protein. In the present study, we characterized the GPI-anchored HDL/apoA-I binding protein from macrophages. The HDL/apoA-I binding protein was purified from macrophages and digested with endopeptidase, and the resultant fragments were sequenced. Cholesterol efflux, flow cytometry, immunoblotting, and immunohistochemical analyses were performed to characterize the HDL/apoA-I binding protein. Two parts of seven amino acid sequences completely matched those of moesin. Flow cytometry, immunoblotting, and immunohistochemistry using anti-moesin antibody showed that the HDL/apoA-I binding protein was N-glycosylated and expressed on the cell surface. It was termed moesin-like protein. Treatment of macrophages with anti-moesin antibody blocked the binding of HDL/apoA-I and suppressed cholesterol efflux. The moesin-like protein was exclusively expressed on macrophages and was upregulated by cholesterol loading and cell differentiation. Our results indicate that the moesin-like HDL/apoA-I binding protein is specifically expressed on the surface of human macrophages and promotes cholesterol efflux from macrophages.-Matsuyama, A, N. Sakai, H. Hiraoka, K-i. Hirano, and S. Yamashita. Cell surface-expressed moesin-like HDL/apoA-I binding protein promotes cholesterol efflux from human macrophages.  相似文献   
183.
184.
We administered prolactin-releasing peptide (PrRP) or anti-PrRP antiserum to goldfish in fresh water and analyzed their effects on prolactin and osmoregulatory mechanisms. The pituitary mRNA level of prolactin increased by PrRP but decreased by anti-PrRP. The rate of water inflow in the gills decreased by PrRP and increased by anti-PrRP, showing that PrRP restricts branchial water permeability, as also restricted by prolactin. PrRP also expanded the mucous cell layers on the scales, which may restrict efficiently water inflow by the mucous system. Eventually, the plasma osmotic pressure decreased by anti-PrRP. We conclude that PrRP is essential to maintain prolactin levels and osmotic balance in fresh water.  相似文献   
185.
The anatomical structure of internal sacs for embryonic incubation was studied using SEM and light microscopy in three cheilostome bryozoans-Nematoflustra flagellata (Waters,1904), Gontarella sp., and Biflustra perfragilis MacGillivray, 1881. In all these species the brood sac is located in the distal half of the maternal (egg-producing) autozooid, being a conspicuous invagination of the body wall. It consists of the main chamber and a passage (neck) to the outside that opens independently of the introvert. There are several groups of muscles attached to the thin walls of the brood sac and possibly expanding it during oviposition and larval release. Polypide recycling begins after oviposition in Gontarella sp., and the new polypide bud is formed by the beginning of incubation. Similarly, polypides in brooding zooids degenerate in N. flagellata and, sometimes, in B. perfragilis. In the evolution of brood chambers in the Cheilostomata, such internal sacs for embryonic incubation are considered a final step, being the result of immersion of the brooding cavity into the maternal zooid and reduction of the protecting fold (ooecium). Possible reasons for this transformation are discussed, and the hypothesis of Santagata and Banta (Santagata and Banta1996) that internal brooding evolved prior to incubation in ovicells is rejected.  相似文献   
186.
The LolCDE complex, an ATP-binding cassette (ABC) transporter, releases lipoproteins from the inner membrane, thereby initiating lipoprotein sorting to the outer membrane of Escherichia coli. The LolCDE complex is composed of two copies of an ATPase subunit, LolD, and one copy each of integral membrane subunits LolC and LolE. LolD hydrolyzes ATP on the cytoplasmic side of the inner membrane, while LolC and/or LolE recognize and release lipoproteins anchored to the periplasmic leaflet of the inner membrane. Thus, functional interaction between LolD and LolC/E is critically important for coupling of ATP hydrolysis to the lipoprotein release reaction. LolD contains a characteristic sequence called the LolD motif, which is highly conserved among LolD homologs but not other ABC transporters of E. coli. The LolD motif is suggested to be a region in contact with LolC/E, judging from the crystal structures of other ABC transporters. To determine the functions of the LolD motif, we mutagenized each of the 32 residues of the LolD motif and isolated 26 dominant-negative mutants, whose overexpression arrested growth despite the chromosomal lolD(+) background. We then selected suppressor mutations of the lolC and lolE genes that correct the growth defect caused by the LolD mutations. Mutations of the lolC suppressors were mainly located in the periplasmic loop, whereas ones of lolE suppressors were mainly located in the cytoplasmic loop, suggesting that the mode of interaction with LolD differs between LolC and LolE. Moreover, the LolD motif was found to be critical for functional interplay with LolC/E, since some LolD mutations lowered the ATPase activity of LolCDE without affecting that of LolD.  相似文献   
187.
LolA, a periplasmic chaperone, binds to outer membrane-specific lipoproteins released from the inner membrane through the action of an ATP-binding cassette transporter, LolCDE and then transfers them to the outer membrane receptor LolB, thereby mediating the inner to outer membrane transport of lipoproteins. The crystal structure of free LolA revealed that it has an internal hydrophobic cavity, which is surrounded by hydrophobic residues and closed by a lid comprising alpha-helices. The hydrophobic cavity most likely represents the binding site for the lipid moiety of a lipoprotein. It is speculated that the lid undergoes opening and closing upon the binding and transfer of lipoproteins, respectively. To determine the functions of the hydrophobic cavity and lid in detail, 14 residues involved in the formation of these structures were subjected to random mutagenesis. Among the obtained 21 LolA derivatives that did not support growth, 14 were active as to the binding of lipoproteins but defective in the transfer of lipoproteins to LolB, causing the periplasmic accumulation of a lipoprotein as a complex with a LolA derivative. A LolA derivative, I93G, bound lipoproteins faster than wild-type LolA did, whereas it did not transfer associated lipoproteins to LolB. When I93G and wild type LolA co-existed, lipoproteins were bound only to I93G; which therefore exhibited a dominant negative property. Another derivative, L59R, was also defective in the transfer of lipoproteins to LolB but did not exhibit a dominant negative property. Taken together, these results indicate that both the hydrophobic cavity and the lid are critically important for not only the binding of lipoproteins but also their transfer.  相似文献   
188.
The roles of Glu(73), which has been proposed to be a catalytic residue of goose type (G-type) lysozyme based on X-ray structural studies, were investigated by means of its replacement with Gln, Asp, and Ala using ostrich egg-white lysozyme (OEL) as a model. No remarkable differences in secondary structure or substrate binding ability were observed between the wild type and Glu(73)-mutated proteins, as evaluated by circular dichroism (CD) spectroscopy and chitin-coated celite chromatography. Substitution of Glu(73) with Gln or Ala abolished the enzymatic activity toward both the bacterial cell substrate and N-acetylglucosamine pentamer, (GlcNAc)(5), while substitution with Asp did not abolish but drastically reduced the activity of OEL. These results demonstrate that the carboxyl group of Glu(73) is directly involved in the catalytic action of G-type lysozyme. Furthermore, the stabilities of all three mutants, which were determined from the thermal and guanidine hydrochloride (GdnHCl) unfolding curves, respectively, were significantly decreased relative to those of the wild type. The results obtained clearly indicate the crucially important roles of Glu(73) in the structural stability as well as in the catalytic activity of G-type lysozyme.  相似文献   
189.
Tissue-specific translational regulation is important for gene expression. YB-1 binds to mRNAs to form mRNPs and affects translation. In this study we investigated expression and polysome association of YB-1 in various tissues at different stages in the lifespan of mice. YB-1 levels decreased markedly with growth in brain, heart and muscle, but increased in the spleen. In lung, kidney and testis, the levels of YB-1 diminished with aging. In liver, no significant change in the level of YB-1 was observed throughout life. We further showed that the distribution pattern of YB-1 on a sucrose gradient differed according to tissue. Moreover, the distribution pattern of YB-1 changed drastically with growth in the liver. In 5-day-old liver, YB-1 was distributed almost exclusively in nonpolysomal fractions, whereas in 4-week-old liver, it was associated with heavy-sedimenting polysomes, as was the case in 5-day-old brain. Immunohistochemical analysis revealed that YB-1 is mainly a cytoplasmic protein in these tissues. Our results indicate that the expression and polysome association of YB-1 are regulated with growth or aging in a tissue-specific manner, presumably to control gene expression at the translational level in each tissue.  相似文献   
190.
Serine protease inhibitor SerpinE2 is known as a cytokine-inducible gene. Here, we investigated whether tumor necrosis factor alpha-(TNF-alpha)-induced expression of SerpinE2 is mediated by the nuclear factor-kappaB (NF-kappaB) p65 subunit. Both steady state and TNF-alpha-induced expression of SerpinE2 mRNA were abrogated in p65-/- murine embryonic fibroblasts (MEFs). Reconstitution with wild-type p65 rescued SerpinE2 mRNA expression in an IkappaB kinase beta-dependent manner. Electrophoresis mobility shift assay and ChIP assay demonstrated that p65 bound to the kappaB-like DNA sequence located at approximately -9 kbp in the SerpinE2 promoter. In addition, TNF-alpha stimulated luciferase gene expression driven by the kappaB-like element in the reconstituted MEFs, but not in p65-/- MEFs. These results indicated that activation of NF-kappaB p65 plays an important role in TNF-alpha-induced expression of SerpinE2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号