首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   17篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   5篇
  2016年   6篇
  2015年   7篇
  2014年   5篇
  2013年   6篇
  2012年   10篇
  2011年   12篇
  2010年   3篇
  2009年   5篇
  2008年   14篇
  2007年   9篇
  2006年   13篇
  2005年   6篇
  2003年   4篇
  2002年   9篇
  2001年   5篇
  2000年   6篇
  1999年   3篇
  1998年   5篇
  1997年   5篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   6篇
  1992年   4篇
  1991年   3篇
  1987年   1篇
  1984年   1篇
  1983年   3篇
  1977年   1篇
排序方式: 共有169条查询结果,搜索用时 15 毫秒
91.
In chronic kidney disease (CKD), progressive nephron loss causes glomerular sclerosis, as well as tubulointerstitial fibrosis and progressive tubular injury. In this study, we aimed to identify molecular changes that reflected the histopathological progression of renal tubulointerstitial fibrosis and tubular cell damage. A discovery set of renal biopsies were obtained from 48 patients with histopathologically confirmed CKD, and gene expression profiles were determined by microarray analysis. The results indicated that hepatitis A virus cellular receptor 1 (also known as Kidney Injury Molecule-1, KIM-1), lipocalin 2 (also known as neutrophil gelatinase-associated lipocalin, NGAL), SRY-box 9, WAP four-disulfide core domain 2, and NK6 homeobox 2 were differentially expressed in CKD. Their expression levels correlated with the extent of tubulointerstitial fibrosis and tubular cell injury, determined by histopathological examination. The expression of these 5 genes was also increased as kidney damage progressed in a rodent unilateral ureteral obstruction model of CKD. We calculated a molecular score using the microarray gene expression profiles of the biopsy specimens. The composite area under the receiver operating characteristics curve plotted using this molecular score showed a high accuracy for diagnosing tubulointerstitial fibrosis and tubular cell damage. The robust sensitivity of this score was confirmed in a validation set of 5 individuals with CKD. These findings identified novel molecular markers with the potential to contribute to the detection of tubular cell damage and tubulointerstitial fibrosis in the kidney.  相似文献   
92.
Chondroitin sulfate (CS) containing GlcA-GalNAc(4,6-SO4) (E unit) and CS containing GlcA(2SO4)-GalNAc(6SO4) (D unit) have been implicated in various physiological functions. However, it has been poorly understood how the structure and contents of disulfated disaccharide units in CS contribute to these functions. We prepared CS libraries containing E unit or D unit in various proportions by in vitro enzymatic reactions using recombinant GalNAc 4-sulfate 6-O-sulfotransferase and uronosyl 2-O-sulfotransferase, and examined their inhibitory activity toward thrombin. The in vitro sulfated CSs containing disulfated disaccharide units showed concentration-dependent direct inhibition of thrombin when the proportion of E unit or D unit in the CSs was above 15–17%. The CSs containing both E unit and D unit exhibited higher inhibitory activity toward thrombin than the CSs containing either E unit or D unit alone, if the proportion of the total disulfated disaccharide units of these CSs was comparable. The thrombin-catalyzed degradation of fibrinogen, a physiological substrate for thrombin, was also inhibited by the CS containing both E unit and D unit. These observations indicate that the enzymatically prepared CS libraries containing various amounts of disulfated disaccharide units appear to be useful for elucidating the physiological function of disulfated disaccharide units in CS.  相似文献   
93.
Sarcoidosis is a systemic granulomatous disease of unknown etiology. NOD2 mutations have been shown to predispose to granulomatous diseases, including Crohn's disease, Blau syndrome, and early-onset sarcoidosis, but not to adult sarcoidosis. We found that intracellular Propionibacterium acnes, a possible causative agent of sarcoidosis, activated NF-kappaB in both NOD1- and NOD2-dependent manners. Systematic search for NOD1 gene polymorphisms in Japanese sarcoidosis patients identified two alleles, 796G-haplotype (156C, 483C, 796G, 1722G) and 796A-haplotype (156G, 483T, 796A, 1722A). Allelic discrimination of 73 sarcoidosis patients and 215 healthy individuals showed that the frequency of 796A-type allele was significantly higher in sarcoidosis patients and the ORs were significantly elevated in NOD1-796G/A and 796A/A genotypes (OR [95% CI]=2.250 [1.084, 4.670] and 3.243 [1.402, 7.502], respectively) as compared to G/G genotype, showing an increasing trend across the 3 genotypes (P=0.006 for trend). A similar association was found when 52 interstitial pneumonia patients were used as disease controls. Functional studies showed that the NOD1 796A-allele was associated with reduced expression leading to diminished NF-kappaB activation in response to intracellular P. acnes. The results indicate that impaired recognition of intracellular P. acnes through NOD1 affects the susceptibility to sarcoidosis in the Japanese population.  相似文献   
94.
A novel cyclic trimer and tetramer of protected beta-glycamino acids were synthesized and investigated on conformation and assembly formation. A characteristic point of these cyclic beta-glycamino acids is their better solubility than other cyclic beta-amino acids due to the pyranose rings. Thus, the assembling process of the cyclic molecules could be examined by CD or NMR spectroscopy. FT-IR and NMR measurements and geometry optimization revealed a highly symmetric and planar conformation for each cyclic beta-peptide with all-trans amide groups. The amide groups in the cyclic peptides took a vertical orientation against the cyclic skeleton to be suitably arranged for intermolecular hydrogen bonds, which should promote formation of molecular assembly in a columnar structure through molecular stacking. These cyclic beta-peptides were successfully crystallized to yield rod-shaped molecular assemblies in nanometer sizes. Evidence for the columnar structure in the crystals was obtained by electron diffraction analysis, which showed a layer spacing of ca. 4.8 A. Interestingly, the molecular assembly of the cyclic trimer showed a high aspect ratio, width less than 40 nm, and length more than 2 mum, suggesting stable molecular stacking in the column.  相似文献   
95.
5-(2,2-Dimethyl-1,3-propoxy cyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO), a new cyclic DEPMPO-type nitrone was evaluated for spin-trapping capabilities toward hydroxyl and superoxide radicals. CYPMPO is colorless crystalline and freely soluble in water. Both the solid and diluted aqueous solution did not develop electron spin resonance (ESR) signal for at least 1 month at ambient conditions. CYPMPO can spin-trap superoxide and hydroxyl radicals in both chemical and biological systems, and the ESR spectra are readily assignable. Half life for the superoxide adduct of CYPMPO produced in UV-illuminated hydrogen peroxide solution was approximately 15 min, and in biological systems such as hypoxanthine (HX)/xanthine oxidase (XOD) the half-life of the superoxide adduct was approximately 50 min. In UV-illuminated hydrogen peroxide solution, there was no conversion from the superoxide adduct to the hydroxyl adduct. Although overall spin-trapping capabilities of CYPMPO are similar to DEPMPO, its high melting point, low hygroscopic property, and the long shelf-life would be highly advantageous for the practical use.  相似文献   
96.
For production of starch in algal cultures, a growth rate limited by a nutrient is an important factor. Under phototrophic conditions, turbidity must be also paid attention, as the shading effect may affect its productivity. Semi-continuous cultivation methods, which enable control of turbidity and dilution rate (D) at the same time, have been developed for evaluation of those factors on starch production in Chlamydomonas sp. A specific feature of the methods is in a process of alternately feeding medium adjusted at two different nitrogen (N) concentrations. In the turbidostat-based method, a turbidostat culture was operated repeating three steps of determining D within a preset interval, alternating media by comparing the D with a preset value, and adjusting D in the next interval by feeding the selected medium. In the chemostat-based method, turbidity of a chemostat culture was controlled by repeating two steps of alternating media by comparing transmitted photon flux intensity (I) with a preset value and adjusting I by feeding the selected medium. D controlled by the turbidostat-based method reached quickly a preset value as low as 0.010/h, and then it was dispersed around but above the preset value. On the other hand, mean N concentrations of fed media formed a plateau. In the chemostat-based method, I was well controlled to a preset value while the mean N concentrations were a bit fluctuated. Starch concentration varied from 0.052 to 0.41 g/L with turbidity and D defined by these methods.  相似文献   
97.
FtsY is a signal recognition particle receptor in Escherichia coli that mediates the targeting of integral membrane proteins to translocons by interacting with both signal recognition particle (SRP)-nascent polypeptide-ribosome complexes and the cytoplasmic membrane. Genes encoding the N-terminal segments of Streptomyces lividans FtsY were fused to a gene encoding the E. coli FtsY NG domain (truncated versions of FtsY lacking the transient membrane-anchor domain at the N-terminus), introduced into a conditional ftsY-deletion mutant of E. coli, and expressed in trans to produce chimeric FtsY proteins. Under FtsY-depleted conditions, strains producing chimeric proteins including 34 N-terminal hydrophobic residues grew whereas strains producing chimeric proteins without these 34 residues did not. A strain producing the chimeric protein comprising the 34 residues and NG domain processed beta-lactamase, suggesting that the SRP-dependent membrane integration of leader peptidase was restored in this strain. These results suggest that the N-terminal hydrophobic segment of FtsY in this Gram-positive bacterium is responsible for its interaction with the cytoplasmic membrane.  相似文献   
98.
It is well known that in certain disease states, including ischemia and Alzheimer's disease, neurodegeneration occurs in the hippocampus and that vulnerability to neuronal death is area dependent. The present study investigated the mechanism of area-dependent vulnerability to neuronal death under endoplasmic reticulum stress conditions induced by tunicamycin (TM), using rat organotypic hippocampal cultures (OHC) and hippocampal slices. Analysis of propidium iodide uptake showed that TM-induced neuronal death in a concentration-dependent manner (20-80 microg/mL) and that the rank order of vulnerability among hippocampal subregions was dentate gyrus (DG)>CA1>CA3. Results of immunohistochemistry using hippocampal slices also showed that procaspase-12-positive cells in area CA3 were significantly fewer than those in area CA1 and the DG. Moreover, procurement of neurons in areas CA1, CA3 and the DG by laser microdissection, followed by Western blot analysis, also revealed that the level of procaspase-12 in area CA3 was significantly lower than those in area CA1 and the DG. Pretreatment with z-ATAD-fmk, a cell-permeable caspase-12-selective inhibitor significantly attenuated the TM-induced increase of PI fluorescence in the CA1 and DG subregion but not in area CA3. These results suggest that TM elicits subregion-specific neuronal toxicity in OHC and that the vulnerability to TM-induced toxicity is at least partly dependent on the expression level of endogenous procaspase-12 in each area of the hippocampus.  相似文献   
99.
Helical peptides of 8mer, 16mer, and 24mer carrying a disulfide group at the N-terminal and a ferrocene moiety at the C-terminal were synthesized, and they were self-assembled on gold by a sulfur-gold linkage. Infrared reflection-absorption spectroscopy and ellipsometry confirmed that they formed a monolayer with upright orientation. Cyclic voltammetry showed that the electron transfer from the ferrocene moiety to gold occurred even with the longest 24mer peptide. Chronoamperometry and electrochemical impedance spectroscopy were carried out to determine the standard electron transfer rate constants. It was found that the dependence of the electron-transfer rates on the distance was significantly weak with the extension of the chain from 16mer to 24mer (decay constant beta = 0.02-0.04). This dependence on distance cannot be explained by an electron tunneling mechanism even if increased hydrogen-bonding cooperativity or molecular dynamics is considered. It is thus concluded that this long-range electron transfer is operated by an electron hopping mechanism.  相似文献   
100.
5-(2,2-Dimethyl-1,3-propoxy cyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO), a new cyclic DEPMPO-type nitrone was evaluated for spin-trapping capabilities toward hydroxyl and superoxide radicals. CYPMPO is colorless crystalline and freely soluble in water. Both the solid and diluted aqueous solution did not develop electron spin resonance (ESR) signal for at least 1 month at ambient conditions. CYPMPO can spin-trap superoxide and hydroxyl radicals in both chemical and biological systems, and the ESR spectra are readily assignable. Half life for the superoxide adduct of CYPMPO produced in UV-illuminated hydrogen peroxide solution was approximately 15 min, and in biological systems such as hypoxanthine (HX)/xanthine oxidase (XOD) the half-life of the superoxide adduct was approximately 50 min. In UV-illuminated hydrogen peroxide solution, there was no conversion from the superoxide adduct to the hydroxyl adduct. Although overall spin-trapping capabilities of CYPMPO are similar to DEPMPO, its high melting point, low hygroscopic property, and the long shelf-life would be highly advantageous for the practical use.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号