首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   9篇
  2022年   1篇
  2021年   5篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   5篇
  2014年   8篇
  2013年   11篇
  2012年   12篇
  2011年   11篇
  2010年   9篇
  2009年   8篇
  2008年   10篇
  2007年   11篇
  2006年   8篇
  2005年   14篇
  2004年   13篇
  2003年   8篇
  2002年   5篇
  2001年   4篇
  2000年   5篇
  1999年   4篇
  1998年   4篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1993年   4篇
  1992年   1篇
  1989年   4篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1976年   2篇
  1975年   1篇
  1970年   2篇
排序方式: 共有197条查询结果,搜索用时 15 毫秒
41.
A novel thermostable NAD(P)H oxidase from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1 (TkNOX) catalyzes oxidation of NADH and NADPH with oxygen from atmospheric air as an electron acceptor. Although the optimal temperature of TkNOX is >90°C, it also shows activity at 30°C. This enzyme was used for the regeneration of both NADP(+) and NAD(+) in alcohol dehydrogenase (ADH)-catalyzed enantioselective oxidation of racemic 1-phenylethanol. NADP(+) regeneration at 30°C was performed by TkNOX coupled with (R)-specific ADH from Lactobacillus kefir, resulting in successful acquisition of optically pure (S)-1-phenylethanol. The use of TkNOX with moderately thermostable (S)-specific ADH from Rhodococcus erythropolis enabled us to operate the enantioselective bioconversion accompanying NAD(+) regeneration at high temperatures. Optically pure (R)-1-phenylethanol was successfully obtained by this system after a shorter reaction time at 45-60°C than that at 30°C, demonstrating an advantage of the combination of thermostable enzymes. The ability of TkNOX to oxidize both NADH and NADPH with remarkable thermostability renders this enzyme a versatile tool for regeneration of the oxidized nicotinamide cofactors without the need for extra substrates other than dissolved oxygen from air.  相似文献   
42.
Vimentin, a type III intermediate filament (IF) protein, is phosphorylated predominantly in mitosis. The expression of a phosphorylation-compromised vimentin mutant in T24 cultured cells leads to cytokinetic failure, resulting in binucleation (multinucleation). The physiological significance of intermediate filament phosphorylation during mitosis for organogenesis and tissue homeostasis was uncertain. Here, we generated knock-in mice expressing vimentin that have had the serine sites phosphorylated during mitosis substituted by alanine residues. Homozygotic mice (VIMSA/SA) presented with microophthalmia and cataracts in the lens, whereas heterozygotic mice (VIMWT/SA) were indistinguishable from WT (VIMWT/WT) mice. In VIMSA/SA mice, lens epithelial cell number was not only reduced but the cells also exhibited chromosomal instability, including binucleation and aneuploidy. Electron microscopy revealed fiber membranes that were disorganized in the lenses of VIMSA/SA, reminiscent of similar characteristic changes seen in age-related cataracts. Because the mRNA level of the senescence (aging)-related gene was significantly elevated in samples from VIMSA/SA, the lens phenotype suggests a possible causal relationship between chromosomal instability and premature aging.  相似文献   
43.
We examined the cooperative effects of isoflavones and cello-oligosaccharides on daidzein metabolism and bone fragility in ovariectomized mice. Cello-oligosaccharides increased urinary equol and decreased O-desmethylangolensin. A combination of isoflavones and cello-oligosaccharides attenuated decreases in bone breaking force and stiffness caused by ovariectomy. Combination treatment with isofalvones and cello-oligosaccharides increases urinary equol/O-desmethylangolensin production ratio and prevents ovariectomy-induced abnormalities in bone strength.  相似文献   
44.
45.
Changes in 7B2 immunoreactivity in the pituitary as well as in the other brain regions and gut after various endocrine situations were investigated. Gonadectomy and neonatal monosodium glutamate (MSG) treatment resulted in an appreciable increase in the pituitary 7B2 concentration, though 7B2 content in the MSG treated pituitary was not significantly different when calculation was performed on a per pituitary gland basis. The 7B2 concentration in the cerebellum, midbrain and cortex in thyroxine treated rats showed a significant increase, which might indicate possible thyroid hormone involvement in 7B2 metabolism in the brain. The pituitary 7B2 concentration during the estrous cycle did not change significantly. These results suggest that pituitary 7B2 may correlate to the pituitary gonadotropins and that brain 7B2 content may be modulated by thyroid hormones.  相似文献   
46.
47.
The nucleotide sequence of the Escherichia coli dnaC gene and the primary structure of the dnaC protein were determined. The NH2-terminal amino acid sequence of the dnaC protein matched that predicted from the nucleotide sequence of the 735-base pair coding region. The dnaC gene lacks characteristic promoter structures; neither the "Pribnow box" nor the "-35 sequence" was detected within 222 base pairs upstream from the initiator ATG codon. There is, however, a typical Shine-Dalgarno sequence 7-10 base pairs before the ATG codon. An upstream open reading frame, separated by just 2 base pairs from the coding region of dnaC, encodes the COOH-terminal half of the dnaT product (protein i; Masai, H., Bond, M. W., and Arai, K. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 1256-1260). The dnaC protein contains 245 amino acids with a calculated molecular weight of 27,894 consistent with the observed value (29,000). Similar to dnaG and dnaT, dnaC uses several minor codons; the significance of these minor codons to the low level expression of the protein product in E. coli cells remains to be determined. The in vitro site-directed mutagenesis method was employed to determine the functional region involved in interaction with dnaB protein. The first cysteine residue located in the NH2-terminal region of the dnaC protein (Cys69) was shown to be important for this activity. Overall sequence homology between dnaC protein and lambda P protein, functionally analogous to the dnaC protein in the lambda phage DNA replication, is not extensive. There are, however, several short stretches of homologous regions including the NH2-terminal eight amino acids and the Cys78 region of dnaC protein.  相似文献   
48.
The molecular analysis of crossing-over within the mouse major histocompatibility complex provides a useful approach for the study of the structural characteristics of meiotic recombination. In this study five intra-I-region recombinants, each derived fromI k/I b heterozygotes, were characterized for restriction-fragment length polymorphisms (RFLPs) characteristic of theI region of the two parental strains. Southern blot analysis of intra-I recombinant strains A.TBR2, A.TBR3, A.TBR5, A.TBR13, and A.TBR17 using sixI-region DNA probes revealed that the point of crossing-over in all five recombinants occurred within a 6.2-kbKpnI-EcoRI segment located within theE gene. The segments of DNA containing the crossover point from each of the recombinant chromosomes were cloned by screening partial genomic libraries constructed in gt7 bacteriophage. Construction of partial restriction maps of the cloned segments from the parental and recombinant chromosomes permitted the boundaries of the area containing the crossover site to be narrowed to a 4.0-kb segment located almost entirely within an intron of theE gene. The recognition that the points of crossing-over in all five recombinants studied are clustered in a relatively small area of theI region provides further evidence for a hot spot of recombination associated with theE ß gene.This work was supported by Grants AI14424 and AI20317 from the National Institutes of Health. J. Kobori was supported by a postdoctoral fellowship from the Arthritis Foundation. E. Zimmerer was supported by a postdoctoral fellowship from the Charles and Johanna Busch Fund of the Bureau of Biological Research. D. Spinella was supported by a predoctoral fellowship from the Charles and Johanna Busch Fund.  相似文献   
49.
Abstract Starved cells of cadmium-sensitive Staphylococcus aureus 17810S accumulated 109Cd via the Mn2+ porter energized by the membrane potential (ΔΨ) generated by l-lactate oxidation. However, Cd2+ accumulation did not result in inhibition of respiration and consequent generation of electrochemical proton gradient (ΔμH+) via the respiratory chain. Thus, ΔμH+-consuming processes, such as ATP synthesis and [14C]glutamate transport proceeded normally, despite the presence of Cd2+ in the cytoplasm. The mechanism of the intrinsic cadmium-insensitivity of the l-lactate oxidizing system is discussed.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号