首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3848篇
  免费   328篇
  国内免费   503篇
  2024年   16篇
  2023年   63篇
  2022年   156篇
  2021年   251篇
  2020年   175篇
  2019年   215篇
  2018年   185篇
  2017年   166篇
  2016年   193篇
  2015年   255篇
  2014年   289篇
  2013年   345篇
  2012年   372篇
  2011年   310篇
  2010年   194篇
  2009年   204篇
  2008年   196篇
  2007年   164篇
  2006年   157篇
  2005年   126篇
  2004年   82篇
  2003年   77篇
  2002年   53篇
  2001年   44篇
  2000年   38篇
  1999年   53篇
  1998年   27篇
  1997年   30篇
  1996年   25篇
  1995年   38篇
  1994年   29篇
  1993年   26篇
  1992年   22篇
  1991年   12篇
  1990年   10篇
  1989年   10篇
  1988年   13篇
  1987年   13篇
  1986年   6篇
  1985年   17篇
  1984年   5篇
  1983年   5篇
  1982年   4篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1974年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有4679条查询结果,搜索用时 690 毫秒
121.
Glycogen synthase kinase 3 (GSK-3) is a well-known conserved and ubiquitous protein kinase and playing a pivotal role in neurodevelopment, neurogenesis, learning/memory, and neuronal cell death. Dysfunction of GSK-3 had been seen in multiple neurodegenerative and psychiatric diseases. Bipolar disorder and schizophrenia are two common psychiatric diseases first occur in adolescence or young adulthood. They share similar risk genes as well as clinical symptoms, which make it is difficult to be discriminated from each other. Here, by using meta-analysis we reported that glycogen synthase kinase 3β promoter inactive mutant rs334558 may contribute to the development of schizophrenia not bipolar disorder. This might be used to distinguish these two diseases.  相似文献   
122.
123.
The central role of multisubunit tethering complexes in intracellular trafficking has been established in yeast and mammalian systems. However, little is known about their roles in the stress responses and the early secretory pathway in Arabidopsis. In this study, Maigo2 (MAG2), which is equivalent to the yeast Tip20p and mammalian Rad50‐interacting protein, is found to be required for the responses to salt stress, osmotic stress and abscisic acid in seed germination and vegetative growth, and MAG2‐like (MAG2L) is partially redundant with MAG2 in response to environmental stresses. MAG2 strongly interacts with the central region of ZW10, and both proteins are important as plant endoplasmic reticulum (ER)‐stress regulators. ER morphology and vacuolar protein trafficking are unaffected in the mag2, mag2l and zw10 mutants, and the secretory marker to the apoplast is correctly transported in mag2 plants, which indicate that MAG2 functions as a complex with ZW10, and is potentially involved in Golgi‐to‐ER retrograde trafficking. Therefore, a new role for ER–Golgi membrane trafficking in abiotic‐stress and ER‐stress responses is discovered.  相似文献   
124.
125.
Congenital human cytomegalovirus (HCMV) infection is the most frequent infectious cause of birth defects, primarily neurological disorders. Neural progenitor/stem cells (NPCs) are the major cell type in the subventricular zone and are susceptible to HCMV infection. In culture, the differentiation status of NPCs may change with passage, which in turn may alter susceptibility to virus infection. Previously, only early-passage (i.e., prior to passage 9) NPCs were studied and shown to be permissive to HCMV infection. In this study, NPC cultures derived at different gestational ages were evaluated after short (passages 3 to 6) and extended (passages 11 to 20) in vitro passages for biological and virological parameters (i.e., cell morphology, expression of NPC markers and HCMV receptors, viral entry efficiency, viral gene expression, virus-induced cytopathic effect, and release of infectious progeny). These parameters were not significantly influenced by the gestational age of the source tissues. However, extended-passage cultures showed evidence of initiation of differentiation, increased viral entry, and more efficient production of infectious progeny. These results confirm that NPCs are fully permissive for HCMV infection and that extended-passage NPCs initiate differentiation and are more permissive for HCMV infection. Later-passage NPCs being differentiated and more permissive for HCMV infection suggest that HCMV infection in fetal brain may cause more neural cell loss and give rise to severe neurological disabilities with advancing brain development.  相似文献   
126.
Physiological and molecular determinants of embryo implantation   总被引:1,自引:0,他引:1  
Embryo implantation involves the intimate interaction between an implantation-competent blastocyst and a receptive uterus, which occurs in a limited time period known as the window of implantation. Emerging evidence shows that defects originating during embryo implantation induce ripple effects with adverse consequences on later gestation events, highlighting the significance of this event for pregnancy success. Although a multitude of cellular events and molecular pathways involved in embryo–uterine crosstalk during implantation have been identified through gene expression studies and genetically engineered mouse models, a comprehensive understanding of the nature of embryo implantation is still missing. This review focuses on recent progress with particular attention to physiological and molecular determinants of blastocyst activation, uterine receptivity, blastocyst attachment and uterine decidualization. A better understanding of underlying mechanisms governing embryo implantation should generate new strategies to rectify implantation failure and improve pregnancy rates in women.  相似文献   
127.
128.
The relationships between aggregate cell types, cell growth, and the triptolide, wilforgine, and wilforine content in aggregate cell suspension cultures of Tripterygium wilfordii Hook. f. were examined. Aggregate cells larger than 2?mm grew quickly and constituted the majority of the white aggregates. The accumulation of triptolide was strongly correlated with the size of the aggregates and the length of the culture period. The aggregates 0.5?C2?mm in diameter accumulated higher triptolide content than those with other sizes throughout the culture. However, the size of the aggregate cells did not significantly affect on the wilforgine and wilforine content. Two other kinds of aggregate cells, the brown and green aggregate cells, also formed in the suspension cultures. The smallest aggregates (0.1?C0.5?mm) had a lower biomass and growth rate and had more chloroplasts and higher alkaloid content. The results of this study can be used to improve the selection process for the mass production of triptolide, wilforgine, and wilforine from cell suspension cultures.  相似文献   
129.
Elastin is the polymeric, extracellular matrix protein that provides properties of extensibility and elastic recoil to large arteries, lung parenchyma, and other tissues. Elastin assembles by crosslinking through lysine residues of its monomeric precursor, tropoelastin. Tropoelastin, as well as polypeptides based on tropoelastin sequences, undergo a process of self‐assembly that aligns lysine residues for crosslinking. As a result, both the full‐length monomer as well as elastin‐like polypeptides (ELPs) can be made into biomaterials whose properties resemble those of native polymeric elastin. Using both full‐length human tropoelastin (hTE) as well as ELPs, we and others have previously reported on the influence of sequence and domain arrangements on self‐assembly properties. Here we investigate the role of domain sequence and organization on the tensile mechanical properties of crosslinked biomaterials fabricated from ELP variants. In general, substitutions in ELPs involving similiar domain types (hydrophobic or crosslinking) had little effect on mechanical properties. However, modifications altering either the structure or the characteristic sequence style of these domains had significant effects on such properties. In addition, using a series of deletion and replacement constructs for full‐length hTE, we provide new insights into the role of conserved domains of tropoelastin in determining mechanical properties. © 2012 Wiley Periodicals, Inc. Biopolymers 99: 392–407, 2013.  相似文献   
130.
Although parasitoids ultimately kill their host, koinobiont parasitoids must protect not only themselves but also their hosts against extreme environments. In this study, the parasitism rate of Chilo suppressalis Walker (Lepidoptera: Pyralidae) was investigated, and the average body weights, supercooling points, and concentrations of glycerol (acting as a cryoprotectant) in the hemolymph were compared between parasitized and non‐parasitized larvae. Five species of koinobiont endoparasitoids parasitized the overwintering C. suppressalis larvae and the total parasitism rate was 47.6% (n = 1 537). Average body weight of parasitized larvae was significantly lower than that of non‐parasitized larvae, and the parasitism rate of the lighter group (20–30 mg) was highest. The supercooling point of parasitized C. suppressalis larvae (?15.7 ± 0.3 °C) was significantly lower than that of the non‐parasitized larvae (?14.3 ± 0.2 °C). In addition, supercooling points were not correlated with body weights between parasitized and non‐parasitized larvae, indicating that cold hardiness of parasitized larvae was enhanced by endoparasitoids. Furthermore, the concentration of glycerol in the hemolymph was significantly higher in parasitized larvae (205.0 ± 7.1 μmol ml?1) than in non‐parasitized larvae (169.8 ± 14.4 μmol ml?1), which suggests that the mechanism that decreases the supercooling point of parasitized larvae was associated with glycerol. All these results indicated that the cold hardiness of parasitized C. suppressalis larvae was enhanced by their endoparasitoids, which benefitted overwintering endoparasitoids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号