首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10964篇
  免费   934篇
  国内免费   954篇
  12852篇
  2024年   35篇
  2023年   150篇
  2022年   288篇
  2021年   490篇
  2020年   357篇
  2019年   442篇
  2018年   508篇
  2017年   351篇
  2016年   498篇
  2015年   701篇
  2014年   838篇
  2013年   916篇
  2012年   1046篇
  2011年   913篇
  2010年   599篇
  2009年   423篇
  2008年   558篇
  2007年   463篇
  2006年   410篇
  2005年   374篇
  2004年   362篇
  2003年   364篇
  2002年   286篇
  2001年   182篇
  2000年   152篇
  1999年   174篇
  1998年   94篇
  1997年   72篇
  1996年   56篇
  1995年   68篇
  1994年   61篇
  1993年   44篇
  1992年   59篇
  1991年   52篇
  1990年   34篇
  1989年   32篇
  1988年   36篇
  1987年   20篇
  1986年   27篇
  1985年   23篇
  1984年   25篇
  1983年   15篇
  1982年   14篇
  1981年   15篇
  1979年   12篇
  1974年   12篇
  1973年   21篇
  1972年   12篇
  1966年   12篇
  1958年   13篇
排序方式: 共有10000条查询结果,搜索用时 13 毫秒
991.
中国对虾(Penaeus chinensis)4个种群的同工酶遗传变异   总被引:23,自引:0,他引:23  
采用水平淀粉凝胶电泳技术分析了中国对虾(Penaeuschinensis)黄渤海沿岸种群(YP)、朝鲜半岛西海岸种群(KP)和2个养殖种群(CP1和CP2)的同工酶遗传变异水平。每个种群随机选取50尾中国对虾进行同工酶检测。在所分析的12种同工酶编码的20个基因位点中,有4个是多态位点。4个种群的多态位点比例(P0.99)分别为15%、20%、10%和20%。种群平均杂合度(观测值)(Ho)分别为0.014±0.007、0.020±0.010、0.010±0.007和0.033±0.017。4个种群的位点有效等位基因数(Ne)分别为1.015±0.008、1.023±0.011、1.011±0.007和1.042±0.022。杂合子平衡偏离指数(D)分别为+0.037、-0.030、-0.098和-0.030。2个地理种群(YP和KP)的遗传相似性系数(I)和遗传距离(D  相似文献   
992.
993.
条件必需氨基酸谷胺酰胺可上调细胞中热激蛋白(hsp)的表达,为观察谷氨酰胺是否对hsp 家族成员grp75的表达具有调控作用,以PC12细胞为模型用免疫组化、蛋白质印迹法和RT-PCR 等方法检测谷胺酰胺对grp75基因的表达的影响;并以MTT法观察谷氨酰胺对PC12的细胞和grp75低表达的PC12细胞缺糖损伤的保护作用。结果表明谷氨酰胺可以上调grp75的表达,特别是对缺糖细胞的上调作用更显著;但这种上调作用与谷氨酰胺的作用浓度和作用时间并未显示出有明显的关系。MTT检测显示,谷氨酰胺使细胞在缺糖条件下的存活率明显上升;grp75低表达细胞与未转染的细胞相比这种保护效应明显降低,说明谷氨酰胺通过调节grp75的表达对缺糖损伤起到保护作用  相似文献   
994.
筛选分离可以分解菊芋中菊糖的菌株。采用平板稀释法从土样中筛选出能够分解菊芋中菊糖的菌株,并从中得到1株酶活较高的真菌A-15,经菌落观察及采用18S rRNA基因测序鉴定,研究不同因素对菌株菊粉酶活力的影响。通过对分离得到的菌株形态观察及分子鉴定后,确定菌株A-15为黑曲霉(Aspergillus niger)。通过正交试验优化菌株A-15的发酵条件分析结果显示,菌株A-15产菊粉酶最优条件:最佳氮源为酵母膏,氮源量1.0%,氯化钠0.5%,磷酸氢二钾0.3%,菊芋汁定容,初始pH 6,培养温度30℃,摇瓶发酵6 d。结果表明菌株A-15具有很好地降解菊芋中菊糖的性能。  相似文献   
995.
Kang TJ  Woo JH  Song HK  Ahn JH  Kum JW  Han J  Choi CY  Joo H 《FEBS letters》2002,517(1-3):211-214
Using Escherichia coli cell-free protein synthesis system and aminoacylated amber suppressor tRNA, we successfully inserted an unnatural amino acid S-(2-nitrobenzyl)cysteine into human erythropoietin. Three different types of translation stop suppression were observed and each of the three types was easily discerned with SDS-PAGE. Optimal conditions were established for correct stop and programmed suppressions. Since this system differentiates proteins produced by misreading of codons from those produced by programmed suppression, we conclude that this cell-free translation system that we describe in this paper will be of a great use for future investigations on translation stop processes.  相似文献   
996.
Amyloid plaques are crucial for the pathogenesis of Alzheimer disease (AD). Phagocytosis of fibrillar β-amyloid (Aβ) by activated microglia is essential for Aβ clearance in Alzheimer disease. However, the mechanism underlying Aβ clearance in the microglia remains unclear. In this study, we performed stable isotope labeling of amino acids in cultured cells for quantitative proteomics analysis to determine the changes in protein expression in BV2 microglia treated with or without Aβ. Among 2742 proteins identified, six were significantly up-regulated and seven were down-regulated by Aβ treatment. Bioinformatic analysis revealed strong over-representation of membrane proteins, including lipoprotein lipase (LPL), among proteins regulated by the Aβ stimulus. We verified that LPL expression increased at both mRNA and protein levels in response to Aβ treatment in BV2 microglia and primary microglial cells. Silencing of LPL reduced microglial phagocytosis of Aβ, but did not affect degradation of internalized Aβ. Importantly, we found that enhanced cyclin-dependent kinase 5 (CDK5) activity by increasing p35-to-p25 conversion contributed to LPL up-regulation and promoted Aβ phagocytosis in microglia, whereas inhibition of CDK5 reduced LPL expression and Aβ internalization. Furthermore, Aβ plaques was increased with reducing p25 and LPL level in APP/PS1 mouse brains, suggesting that CDK5/p25 signaling plays a crucial role in microglial phagocytosis of Aβ. In summary, our findings reveal a potential role of the CDK5/p25-LPL signaling pathway in Aβ phagocytosis by microglia and provide a new insight into the molecular pathogenesis of Alzheimer disease.Alzheimer disease (AD)1 is one of the most common neurodegenerative disorders, which is characterized by pathological hallmarks such as neuronal and synaptic loss, neurofibrillary tangles (NFTs), and senile plaques. The intracellular NFTs are mainly composed of hyper-phosphorylated microtubule-associated protein tau, whereas toxic fibrillar β-amyloid (fAβ) as the main component of senile plaques is generated by sequential proteolytic cleavage of trans-membrane β-amyloid precursor protein (APP) by β- and γ-secretases. fAβ can induce oxidative stress-mediated neuronal cell death and cause cognitive impairment in mouse brains (1). Many reports suggest that fAβ induces dysregulation of two pivotal kinases CDK5 (2, 3) and GSK-3 (4), which are crucial regulators of hyperphosphorylated tau and increased production of Aβ from APP, and thereby triggers the cascade of signal transduction events underlying neuronal cell death in AD pathogenesis.As the resident immune cells in the brain, microglia can be activated in response to fAβ and often accumulate around the amyloid deposits in the brains of AD patients. Activated microglia trigger the production of inflammatory factors, reactive oxygen species, and chemokines, which may cause neuronal cell death (5). Furthermore, increasing evidence supports that activated microglia exert a vital beneficial role in the clearance of Aβ by phagocytosis. Many receptors, including scavenger receptor A (SR-A) (6), scavenger receptor class B type I (SR-BI) (7), lipopolysaccharide receptor (CD14) (8), CD33 (9), B-class scavenger receptor CD36 (10), CD47 (11), β1 integrin (12), toll-like receptor 2 (TLR2) (13), and toll-like receptor 4 (TLR4) (14), have been implicated in microglial phagocytosis of fAβ via direct or indirect binding to Aβ. Microglial phagocytosis of fAβ is also regulated by proinflammatory cytokines (15) and chemokine receptor CX3CR1 (16). Farfara et al. reported that the γ-secretase component presenilin, which is responsible for APP cleavage and Aβ production in neurons, is important for microglial fAβ clearance, indicating a dual role for presenilin in neuronal cell death and microglial phagocytosis (17). In addition, accumulating evidence suggests a critical role of lipids and lipoproteins in microglial fAβ phagocytosis and clearance. Lee et al. reported that apolipoprotein E (ApoE) enhances fAβ trafficking and degradation, indicating a role of cholesterol in fAβ degradation (18). After internalization, fAβ is degraded through the lysosome pathway (19, 20). However, the mechanism underlying microglial internalization of fAβ remains unclear.Stable isotope labeling of amino acids in cell culture (SILAC) is an accurate and reproducible mass spectrometry-based quantitative proteomics approach for examining changes in protein expression or post-translational modifications at a large scale (21, 22). Here, we used the SILAC quantitative proteomics strategy to investigate changes in the protein levels in BV2 microglia treated with fAβ. We found that 6 proteins were up-regulated and 7 were down-regulated significantly by Aβ treatment. Interestingly, bioinformatic analysis revealed that most of these up- or down-regulated proteins, including lipoprotein lipase (LPL), were mainly distributed in the cell membrane. We verified that LPL was up-regulated at both gene and protein levels in BV2 and primary microglia in response to fAβ, thereby indicating its role in the microglial phagocytosis of Aβ. Importantly, we further demonstrated that CDK5, which is a critical serine/threonine kinase in the pathogenesis of AD, regulated the expression of LPL and played a critical role in Aβ phagocytosis of microglia. Moreover, we found that increase in the p35-to-p25 conversion contributed to the enhanced CDK5 activity under Aβ stimulus and played a vital role in regulation of LPL expression and microglial Aβ phagocytosis. Our results suggest a role of the CDK5/p25-LPL signaling pathway in Aβ phagocytosis of microglia and provide valuable information to understand the molecular mechanism underlying microglial fAβ phagocytosis.  相似文献   
997.
Rotavirus (RV) infection is the main cause of acute dehydrating diarrhea in infants and young children below 5 years old worldwide. RV infection causes a global shutoff of host proteins as many other viruses do. However, previous studies revealed that RV could selectively upregulated the expression of some host proteins that then played important roles in RV infection. To globally explor such host proteins that were upregulated in early human rotavirus (HRV) infection, proteomic methods were used and a total of ten upregulated host proteins were unambiguously identified. Cyclophilin A (CYPA), a peptidyl‐prolyl cis‐trans isomerase, was among these upregulated host proteins. Following infection, CYPA was recruited to the viroplasm and interacted with HRV structural protein VP2; CYPA reduced host susceptibility to HRV infection and inhibited replication of HRV by repressing the expression of viral proteins. Furthermore, we found that the increased expression of CYPA in enterocytes of small intestine correlated to the period when BALB/c mice became resistant to RV diarrhea. Together, we identified CYPA as a novel host restriction factor that confered protection against RV infection and might contribute to host susceptibility to RV diarrhea.  相似文献   
998.
按照工程学原理人工设计的基因元件应该是模块化的,同时具备可预测地组装和再利用的属性。然而,真正的细胞生理条件下各种层次的生理干涉效应会严重地阻碍人工基因元件的功能性组装,即大多数组装后的人工系统完全或部分丧失预设功能。我们提出合成生理学的概念,将其定义为研究和控制人工生命系统与底盘细胞生理系统相互作用的合成生物学分支领域。在此框架下,本文归纳了细胞生理系统与人工基因元件的相互干涉方式,并对表征和消除这种相互作用的技术方法和设计策略进行综述。  相似文献   
999.
Novel matrix metalloproteinase (MMP) inhibitor radiotracers, (S)-3-methyl-2-(2',3',4'-methoxybiphenyl-4-sulfonylamino)-butyric acid [(11)C]methyl ester (1a-c), (S)-3-methyl-2-(2',3',4'-fluorobiphenyl-4-sulfonylamino)-butyric acid [(11)C]methyl ester (1d-f), and (S)-3-methyl-2-(4'-nitrobiphenyl-4-sulfonylamino)-butyric acid [(11)C]methyl ester (1g), a series of substituted biphenylsulfonamide derivatives, have been synthesized for evaluation as new potential positron emission tomography (PET) cancer imaging agents.  相似文献   
1000.
Taxus chinensis var. mairei (Taxaceae) is a domestic variety of yew species in local China. This plant is one of the sources for paclitaxel, which is a promising antineoplastic chemotherapy drugs during the last decade. We have sequenced the complete nucleotide sequence of the chloroplast (cp) genome of T. chinensis var. mairei. The T. chinensis var. mairei cp genome is 129,513 bp in length, with 113 single copy genes and two duplicated genes (trnI-CAU, trnQ-UUG). Among the 113 single copy genes, 9 are intron-containing. Compared to other land plant cp genomes, the T. chinensis var. mairei cp genome has lost one of the large inverted repeats (IRs) found in angiosperms, fern, liverwort, and gymnosperm such as Cycas revoluta and Ginkgo biloba L. Compared to related species, the gene order of T. chinensis var. mairei has a large inversion of ~ 110 kb including 91 genes (from rps18 to accD) with gene contents unarranged. Repeat analysis identified 48 direct and 2 inverted repeats 30 bp long or longer with a sequence identity greater than 90%. Repeated short segments were found in genes rps18, rps19 and clpP. Analysis also revealed 22 simple sequence repeat (SSR) loci and almost all are composed of A or T.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号