首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19424篇
  免费   1445篇
  国内免费   1330篇
  2024年   52篇
  2023年   289篇
  2022年   627篇
  2021年   1063篇
  2020年   710篇
  2019年   890篇
  2018年   801篇
  2017年   616篇
  2016年   883篇
  2015年   1255篇
  2014年   1473篇
  2013年   1509篇
  2012年   1756篇
  2011年   1531篇
  2010年   952篇
  2009年   816篇
  2008年   945篇
  2007年   765篇
  2006年   728篇
  2005年   574篇
  2004年   528篇
  2003年   470篇
  2002年   408篇
  2001年   373篇
  2000年   341篇
  1999年   312篇
  1998年   204篇
  1997年   188篇
  1996年   174篇
  1995年   153篇
  1994年   115篇
  1993年   105篇
  1992年   132篇
  1991年   110篇
  1990年   96篇
  1989年   58篇
  1988年   46篇
  1987年   49篇
  1986年   26篇
  1985年   26篇
  1984年   16篇
  1983年   20篇
  1982年   4篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
  1972年   1篇
  1966年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
931.
Breast cancer is a common malignancy that is highly lethal with poor survival rates and immature therapeutics that urgently needs more effective and efficient therapies. MicroRNAs are intrinsically involved in different cancer remedies, but their mechanism in breast cancer has not been elucidated for prospective treatment. The function and mechanism of microRNA-188-5p (miR-188) have not been thoroughly investigated in breast cancer. In our study, we found that the expression of miR-188 in breast cancer tissues was obviously reduced. Our findings also revealed the abnormal overexpression of miR-188 in 4T1 and MCF-7 cells significantly suppressed cell proliferation and migration and also enhanced apoptosis. miR-188 induced cell cycle arrest in the G1 phase. To illuminate the molecular mechanism of miR-188, Rap2c was screened as a single target gene by bioinformatics database analysis and was further confirmed by dual-luciferase assay. Moreover, Rap2c was found to be a vital molecular switch for the mitogen-activated protein kinase signaling pathway in tumor progression by decreasing apoptosis and promoting proliferation and migration. In conclusion, our results revealed that miR-188 is a cancer progression suppressor and a promising future target for breast cancer therapy.  相似文献   
932.
Few studies about nucleotide-oligomerization domain-like receptor subfamily C3 (NLRC3) in PASMCs have been conducted. This research aimed to investigate the role of NLRC3 on platelet-derived growth factor (PDGF)-induced proliferation of pulmonary artery smooth muscle cells (PASMCs) and its underlying mechanism. We found that the proliferation of PASMCs stimulated with PDGF decreased when phosphoinositide 3-kinase (PI3K) or mammalian target of rapamycin (mTOR) inhibitors pretreatment. Overexpression of NLRC3 inhibited the proliferation of PASMCs and the phosphorylation of PI3K and mTOR while knocking down NLRC3 reversed this effect. Targeted to PI3K or mTOR can also reverse the effect of NLRC3. Activation of PI3K increased the phosphorylation of mTOR while inhibition of PI3K reduced it. Our data suggest that PDGF can induce abnormal proliferation of PASMCs, and NLRC3 suppresses activation of the PI3K-mTOR signaling thus inhibits PASMCs proliferation. These findings unveiled the effect of NLRC3 as an inhibitor of the PI3K-mTOR pathway mediating protection against PASMCs proliferation.  相似文献   
933.
多酶组合催化制备L-高苯丙氨酸   总被引:1,自引:0,他引:1  
刘佳  宋伟  郭亮  陈修来  高聪  刘立明 《微生物学报》2021,61(9):2829-2842
【目的】L-高苯丙氨酸(L-HPA)是许多医药化学品的重要中间体,化学合成法生产L-HPA反应复杂、环境污染严重,本研究旨在开发高效环保的L-HPA酶法合成路线。【方法】采用模块化组装的方法,构建了一条以甘氨酸和苯乙醛为底物高产L-HPA的新途径。【结果】首先,根据文献挖掘设计了一条由苏氨酸醛缩酶(TA)、苏氨酸脱氨酶(TD)、苯丙氨酸脱氢酶(PheDH)和甲酸脱氢酶(FDH)组成的多酶组合催化途径,用于L-HPA的合成。其次,根据氨基基团的引入和重构,将L-HPA多酶组合催化途径分为基础单元和扩增单元,基础单元包括TA和TD,扩增单元包括PheDH和FDH。然后,利用不同表达水平的质粒,对基础单元和扩增单元进行蛋白表达的组合调节,获得最优工程菌BL21-C-M1-R-M2,使L-HPA产量达到208.6mg/L。最后,我们对全细胞转化体系进行优化,使L-HPA产量进一步提高到1226.6 mg/L,苯乙醛摩尔转化率为34.2%。【结论】该工艺路线绿色高效,为未来大规模生产L-HPA奠定基础。  相似文献   
934.
Ribosome biogenesis is a tightly regulated, multi-stepped process. The assembly of ribosomal subunits is a central step of the complex biogenesis process, involving nearly 30 protein factors in vivo in bacteria. Although the assembly process has been extensively studied in vitro for over 40 years, very limited information is known for the in vivo process and specific roles of assembly factors. Such an example is ribosome maturation factor M (RimM), a factor involved in the late-stage assembly of the 30S subunit. Here, we combined quantitative mass spectrometry and cryo-electron microscopy to characterize the in vivo 30S assembly intermediates isolated from mutant Escherichia coli strains with genes for assembly factors deleted. Our compositional and structural data show that the assembly of the 3′-domain of the 30S subunit is severely delayed in these intermediates, featured with highly underrepresented 3′-domain proteins and large conformational difference compared with the mature 30S subunit. Further analysis indicates that RimM functions not only to promote the assembly of a few 3′-domain proteins but also to stabilize the rRNA tertiary structure. More importantly, this study reveals intriguing similarities and dissimilarities between the in vitro and the in vivo assembly pathways, suggesting that they are in general similar but with subtle differences.  相似文献   
935.
936.
937.
We have demonstrated the neuroprotection of hydrogen sulfide (H2S) against chemical hypoxia-induced injury by inhibiting p38MAPK pathway. The present study attempts to evaluate the effect of H2S on chemical hypoxia-induced inflammation responses and its mechanisms in PC12 cells. We found that treatment of PC12 cells with cobalt chloride (CoCl2, a hypoxia mimetic agent) enhanced IL-6 secretion, nitric oxide (NO) generation and expression levels of inducible nitric oxide synthase (iNOS) and neuronal nitric oxide synthase (nNOS). L-canavanine, a selective iNOS inhibitor, partly blocked CoCl2-induced cytotoxicity, apoptosis and mitochondrial insult. In addition, 7-Nitroindazole (7-NI), an inhibitor of nNOS, also partly attenuated the CoCl2-induced cytotoxicity. The inhibition of p38MAPK by SB203580 (a selective p38MAPK inhibitor) or genetic silencing of p38MAPK by RNAi (Si-p38) depressed not only CoCl2-induced iNOS expression, NO production, but also IL-6 secretion. In addition, N-acetyl-l-cysteine, a reactive oxygen species (ROS) scavenger, conferred a similar protective effect of SB203580 or Si-p38 against CoCl2-induced inflammatory responses. Importantly, pretreatment of PC12 cells with exogenous application of sodium hydrosulfide (a H2S donor, 400 μmol/l) for 30 min before exposure to CoCl2 markedly attenuated chemical hypoxia-stimulated iNOS and nNOS expression, NO generation and IL-6 secretion as well as p38MAPK phosphorylation in PC12 cells. Taken together, we demonstrated that p38MAPK-iNOS pathway contributes to chemical hypoxia-induced inflammation and that H2S produces an anti-inflammatory effect in chemical hypoxia-stimulated PC12 cells, which may be partly due to inhibition of ROS-activated p38MAPK-iNOS pathway.  相似文献   
938.
939.
Autophagy is a highly conserved self-digestion pathway involved in various physiological and pathophysiological processes. Recent studies have implicated a pivotal role of autophagy in adipocyte differentiation, but the molecular mechanism for its role and how it is regulated during this process are not clear. Here, we show that CCAAT /enhancer-binding protein β (C/EBPβ), an important adipogenic factor, is required for the activation of autophagy during 3T3-L1 adipocyte differentiation. An autophagy-related gene, Atg4b, is identified as a de novo target gene of C/EBPβ and is shown to play an important role in 3T3-L1 adipocyte differentiation. Furthermore, autophagy is required for the degradation of Klf2 and Klf3, two negative regulators of adipocyte differentiation, which is mediated by the adaptor protein p62/SQSTM1. Importantly, the regulation of autophagy by C/EBPβ and the role of autophagy in Klf2/3 degradation and in adipogenesis are further confirmed in mouse models. Our data describe a novel function of C/EBPβ in regulating autophagy and reveal the mechanism of autophagy during adipocyte differentiation. These new insights into the molecular mechanism of adipose tissue development provide a functional pathway with therapeutic potential against obesity and its related metabolic disorders.  相似文献   
940.
This study aimed to investigate the protective effect of the M9 region (residues 290–562) of amino-Nogo-A fused to the human immunodeficiency virus trans-activator TAT in an in vitro model of ischemia–reperfusion induced by oxygen–glucose deprivation (OGD) in HT22 hippocampal neurons, and to investigate the role of NADPH oxidase in this protection. Transduction of TAT-M9 was analyzed by immunofluorescence staining and western blot. The biologic activity of TAT-M9 was assessed by its effects against OGD-induced HT22 cell damage, compared with a mutant M9 fusion protein or vehicle. Cellular viability and lactate dehydrogenase (LDH) release were assessed. Neuronal apoptosis was evaluated by flow cytometry. The Bax/Bcl-2 ratio was determined by western blotting. Reactive oxygen species (ROS) levels and NADPH oxidase activity were also measured in the presence or absence of an inhibitor or activator of NADPH oxidase. Our results confirmed the delivery of the protein into HT22 cells by immunofluorescence and western blot. Addition of 0.4 μmol/L TAT-M9 to the culture medium effectively improved neuronal cell viability and reduced LDH release induced by OGD. The fusion protein also protected HT22 cells from apoptosis, suppressed overexpression of Bax, and inhibited the reduction in Bcl-2 expression. Furthermore, TAT-M9, as well as apocynin, decreased NADPH oxidase activity and ROS content. The protective effects of the TAT-M9 were reversed by TBCA, an agonist of NADPH oxidase. In conclusion, TAT-M9 could be successfully transduced into HT22 cells, and protected HT22 cells against OGD damage by inhibiting NADPH oxidase-mediated oxidative stress. These findings suggest that the TAT-M9 protein may be an efficient therapeutic agent for neuroprotection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号