首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1240篇
  免费   41篇
  国内免费   2篇
  2024年   2篇
  2022年   8篇
  2021年   20篇
  2020年   8篇
  2019年   16篇
  2018年   11篇
  2017年   20篇
  2016年   22篇
  2015年   41篇
  2014年   43篇
  2013年   80篇
  2012年   76篇
  2011年   83篇
  2010年   48篇
  2009年   36篇
  2008年   82篇
  2007年   63篇
  2006年   86篇
  2005年   73篇
  2004年   83篇
  2003年   93篇
  2002年   78篇
  2001年   16篇
  2000年   13篇
  1999年   9篇
  1998年   19篇
  1997年   15篇
  1996年   16篇
  1995年   20篇
  1994年   11篇
  1993年   7篇
  1992年   10篇
  1991年   7篇
  1990年   4篇
  1989年   4篇
  1988年   13篇
  1987年   5篇
  1985年   2篇
  1984年   5篇
  1983年   6篇
  1982年   8篇
  1981年   4篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
  1974年   3篇
  1959年   1篇
排序方式: 共有1283条查询结果,搜索用时 15 毫秒
991.
The gut epithelium self-renews every several days, providing an important innate defense system that limits bacterial colonization. Nevertheless, many bacterial pathogens, including Shigella, efficiently colonize the intestinal epithelium. Here, we show that the Shigella effector IpaB, when delivered into epithelial cells, causes cell-cycle arrest by targeting Mad2L2, an anaphase-promoting complex/cyclosome (APC) inhibitor. Cyclin B1 ubiquitination assays revealed that APC undergoes unscheduled activation due to IpaB interaction with the APC inhibitor Mad2L2. Synchronized HeLa cells infected with Shigella failed to accumulate Cyclin B1, Cdc20, and Plk1, causing cell-cycle arrest at the G2/M phase in an IpaB/Mad2L2-dependent manner. IpaB/Mad2L2-dependent cell-cycle arrest by Shigella infection was also demonstrated in rabbit intestinal crypt progenitors, and the IpaB-mediated arrest contributed to efficient colonization of the host cells. These results strongly indicate that Shigella employ special tactics to influence epithelial renewal in order to promote bacterial colonization of intestinal epithelium.  相似文献   
992.
Core fucosylation and the bisecting N-acetylglucosamine residue are prominent natural substitutions of the N-glycan core. To address the issue of whether these two substituents can modulate ligand properties of complex-type biantennary N-glycans, we performed chemoenzymatic synthesis of the respective galactosylated and alpha2,3/6-sialylated N-glycans. Neoglycoproteins were then produced to determine these glycans' reactivities with sugar receptors in solid-phase assays and with tumor cells in vitro as well as their in vivo biodistribution profiles in mice. Slight protein-type-dependent changes were noted in lectin binding, including adhesion/growth-regulatory galectins as study objects, when the data were related to properties of N-glycans without or with only one core substituent. Monitoring binding in vitro revealed cell-type-dependent changes. They delimited the ligand activity of this glycan type from that of chains with un- and monosubstituted cores. A markedly prolonged serum half-life was conferred to the neoglycoprotein by the galactose-terminated N-glycan, which together with increased organ retention of all three neoglycoproteins underscores the conspicuous relevance for glycoengineering of pharmaproteins. The predominant presentation of the two branches in the disubstituted N-glycan as extended (alpha1,3-antenna) and backfolded (alpha1,6-antenna) forms, revealed by molecular dynamics simulations, can underlie the measured characteristics. These results obtained by a combined strategy further support the concept of viewing N-glycan core substitutions as non-random additions which exert a modulatory role on ligand properties. Moreover, our data inspire us to devise new, non-natural modifications to realize the full potential of glycoengineering for diagnostic and therapeutic purposes.  相似文献   
993.
Nodal and related proteins play central roles in axes formation, mesendoderm induction, neural patterning, and left–right development. However, Xenopus nodal-related 3 (Xnr3) has unique activities in regulating neural induction and convergent extension movements. Xnr3 is distinguished from other transforming growth factor-β superfamily members by the absence of the seventh conserved cysteine at the C terminus of the protein, and little is known about the molecular mechanism of Xnr3 action. In this study, we report a novel and unique mechanism of action that the mature region of Xenopus tropicalis nodal-related 3 (Xtnr3) functions as a monomer. Comparative analyses between Xtnr3 and Xnr5 revealed regions required for dimerization: (1) a conserved glycine, (2) the seventh cysteine, and (3) a putative α-helix located between the third and the fourth cysteines. These results indicate that the mature region of Nodal-related 3 entirely differs from other Nodal-related proteins in its mechanism of action.  相似文献   
994.
Visual pigment in photoreceptors is activated by light. Activated visual pigment (R*) is believed to be inactivated by phosphorylation of R* with subsequent binding of arrestin. There are two types of photoreceptors, rods and cones, in the vertebrate retina, and they express different subtypes of arrestin, rod and cone type. To understand the difference in the function between rod- and cone-type arrestin, we first identified the subtype of arrestins expressed in rods and cones in carp retina. We found that two rod-type arrestins, rArr1 and rArr2, are co-expressed in a rod and that a cone-type arrestin, cArr1, is expressed in blue- and UV-sensitive cones; the other cone-type arrestin, cArr2, is expressed in red- and green-sensitive cones. We quantified each arrestin subtype and estimated its concentration in the outer segment of a rod or a cone in the dark; they were ∼0.25 mm (rArr1 plus rArr2) in a rod and 0.6–0.8 mm (cArr1 or cArr2) in a cone. The effect of each arrestin was examined. In contrast to previous studies, both rod and cone arrestins suppressed the activation of transducin in the absence of visual pigment phosphorylation, and all of the arrestins examined (rArr1, rArr2, and cArr2) bound transiently to most probably nonphosphorylated R*. One rod arrestin, rArr2, bound firmly to phosphorylated pigment, and the other two, rArr1 and cArr2, once bound to phosphorylated R* but dissociated from it during incubation. Our results suggested a novel mechanism of arrestin effect on the suppression of the R* activity in both rods and cones.  相似文献   
995.
Colorectal cancer is a multi-factorial disease involving genetic, environmental and lifestyle risk factors. In recent years, many changes in the bacterial composition of the intestinal microflora have been reported in colorectal cancer, suggesting the involvement of the intestinal microflora in the development and progression of colorectal cancer. Along with these reports, research on lactic acid bacteria that have a beneficial effect on the human body for the purpose of improving the intestinal environment and treating intestinal diseases has advanced. Among these studies, biogenics (defined as a component derived from lactic acid bacteria that acts directly on diseases regardless of the state of intestinal microflora) is a recent concept derived from the work on probiotics. Based on this concept, it is important to evaluate the effectiveness of various components derived from lactic acid bacteria in the treatment to diseases from and apply them in prevention and treatment. In this study, we investigated the antitumor effect of an extract obtained from Lactobacillus plantarum strain 06CC2 on colorectal cancer cells. In in vitro experiments, the extract derived from Lactobacillus plantarum 06CC2 significantly suppressed the proliferation of Caco2 colorectal cancer cells in comparison to control and non-cancer cells. Furthermore, we found that endoplasmic reticulum stress and the JNK/p38 MAPK signaling system are involved in the induction of apoptosis. These findings indicate the direct antitumor effect of the Lactobacillus plantarum 06CC2 extract on Caco2 colorectal cancer cells, and that this extract may have potential application as a biogenics.  相似文献   
996.
Obesity commonly occurs in postmenopausal women, increasing the risk of various diseases. Estrogen can prevent obesity by activating lipid metabolism and suppressing depressive behavior. However, the reasons for obesity in postmenopausal women are not clearly elucidated.To mimic the effect of estrogen decline in postmenopausal women, we analyzed the behavior and the lipid metabolism-related genes, PPARγ and CD36 in ovariectomized (OVX) mice. The OVX mice showed increased visceral fat mass and PPARγ and CD36 expression in the visceral fat. In contrast, they were not significantly affected in terms of physical activity and food intake. Further, subcutaneous supplementation of estrogen effectively suppressed the increase in subcutaneous and visceral fat mass in OVX mice.We conclude that obesity in postmenopausal women is unlikely to be caused by overeating and reduction in physical activity, and subcutaneous supplementation of estrogen is an effective strategy to prevent obesity in postmenopausal women.  相似文献   
997.
When presumptive ectoderm is treated with high concentrations of activin A, it mainly differentiates into axial mesoderm (notochord, muscle) in Xenopus and into yolk-rich endodermal cells in newt (Cynops pyrrhogaster). Xenopus ectoderm consists of multiple layers, different from the single layer of Cynops ectoderm. This multilayer structure of Xenopus ectoderm may prevent complete treatment of activin A and subsequent whole differentiation into endoderm. In the present study, therefore, Xenopus ectoderm was separated into an outer layer and an inner layer, which were individually treated with a high concentration of activin A (100 ng/mL). Then the differentiation and inductive activity of these ectodermal cells were examined in explantation and transplantation experiments. In isolation culture, ectoderm treated with activin A formed endoderm. Ectodermal and mesodermal tissues were seldom found in these explants. The activin-treated ectoderm induced axial mesoderm and neural tissues, and differentiated into endoderm when it was sandwiched between two sheets of ectoderm or was transplanted into the ventral marginal zone of other blastulae. These findings suggest that Xenopus ectoderm treated with a high concentration of activin A forms endoderm and mimics the properties of the organizer as in Cynops.  相似文献   
998.
We previously reported that sphingosine 1‐phosphate (S‐1‐P), a sphingomyelin metabolite, activates p44/p42 mitogen‐activated protein (MAP) kinase and p38 MAP kinase in aortic smooth‐muscle A10 cells. In the present study, we investigated the effect of sphingomyelin metabolites on phospholipase C‐catalyzing phosphoinositide hydrolysis induced by arginine vasopressin (AVP) in A10 cells. C2‐ceramide and sphingosine had little effect on inositol phosphate (IP) formation stimulated by AVP. S‐1‐P, which alone slightly stimulated the IPs formation, dose‐dependently amplified the AVP‐induced formation of IPs. Tumor necrosis factor‐α enhanced the AVP‐induced formation of IPs. However, S‐1‐P did not enhance the formation of IPs by NaF, a heterotrimeric GTP‐binding protein activator. Pertussis toxin inhibited the effect of S‐1‐P. PD98059, an inhibitor of the upstream kinase that activates p44/p42 MAP kinase, had little effect on the enhancement by S‐1‐P. SB203580, an inhibitor of p38 MAP kinase, suppressed the effect of S‐1‐P on the formation of IPs by AVP. SB203580 inhibited the AVP‐induced phosphorylation of p38 MAP kinase. Pertussis toxin suppressed the phosphorylation of p38 MAP kinase by S‐1‐P. These results indicate that S‐1‐P amplifies AVP‐induced phosphoinositide hydrolysis by phospholipase C through p38 MAP kinase in vascular smooth‐muscle cells. J. Cell. Biochem. 80:46–52, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   
999.
1000.
VIP36 functions as a transport lectin for trafficking certain high mannose type glycoproteins in the secretory pathway. Here we report the crystal structure of VIP36 exoplasmic/luminal domain comprising a carbohydrate recognition domain and a stalk domain. The structures of VIP36 in complex with Ca(2+) and mannosyl ligands are also described. The carbohydrate recognition domain is composed of a 17-stranded antiparallel beta-sandwich and binds one Ca(2+) adjoining the carbohydrate-binding site. The structure reveals that a coordinated Ca(2+) ion orients the side chains of Asp(131), Asn(166), and His(190) for carbohydrate binding. This result explains the Ca(2+)-dependent carbohydrate binding of this protein. The Man-alpha-1,2-Man-alpha-1,2-Man, which corresponds to the D1 arm of high mannose type glycan, is recognized by eight residues through extensive hydrogen bonds. The complex structures reveal the structural basis for high mannose type glycoprotein recognition by VIP36 in a Ca(2+)-dependent and D1 arm-specific manner.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号